博碩士論文 85244001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:3.80.5.157
姓名 季松青(Sung-Ching Chi)  查詢紙本館藏   畢業系所 地球物理研究所
論文名稱 大地電磁資料多站多頻分析於 台灣中部及金門地區地殼電性構造
(Application of multi-site and multi-frequency impedance tensor decomposition to resolve the crustal structures of the MT data in central Taiwan and Kinmen area )
相關論文
★ 時間域電磁法應用於地下金屬之探測★ 應用直流電阻法研究台灣西南海岸平原晚更新世與全新世地層界限
★ 併合二維、三維地電阻影像法及透地雷達法應用於管線及估計電石渣總量上之研究★ 地電法應用於混凝土中鋼筋鏽蝕研究
★ 透地雷達於剛性鋪面檢測之應用★ 應用直流電阻法與人控音頻大地電磁波法研究台灣西南海岸平原環境變遷
★ 台灣東部利稻池上地區深部電性構造★ 應用地電阻法研究南崁斷層
★ 大地電磁法探查台灣清水地熱區★ 大地電磁法應用在台灣地區之海岸效應
★ 車籠埔斷層與梅山斷層之地電研究★ 應用大地電磁法研究台灣地區之電性構造
★ 臺灣深部電性構造及其板塊構造意義★ 整合地球物理方法研究變質岩區地熱構造-以金崙地熱區為例
★ 整合地電阻法與水文地質調查於崩塌地滑動之機制研究★ 活動斷層電性研究 — 以湖口、新城及山腳斷層為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本文之研究目的在藉助大地電磁法(MT)多站多頻阻抗分析來還原真實的地下電性構造。經由三維模型二維逆推的模擬分析得到結果:
MT對高導電反應極靈敏而對高電阻較不靈敏。此外,多站多頻張量分解可以提取出區域二維構造的信號,捨棄局部三維異常體所造成扭曲的分量,對於還原區域信號有著非常優異的功效。
應用於台灣中部地區與金門地區大地電磁資料,以多站多頻分析後從其一維與二維逆推後的電性構造獲致結果如下:
第一、集集孕震帶在震源區之東西兩側分別存在低、高電阻異常。根據集集地震所推論出的應力分布來看,壓縮體積應力減少了孔隙率而增加了震源附近的電阻率,主震發生時震源兩旁的擴張應力使孔隙水壓迅速下降,但緊接者觀測到孔隙壓力隨後上升,原因是震源壓縮區超壓將地殼流體向擴張區排放,將有助於降低震源兩旁的地層強度並進而導致地層破壞。集集餘震發生區與預期擴張區提供了重要的空間相關證明,擁有深部地殼流體的破裂岩層能增強孔隙間的流通性,因此減低了高導區的電阻率值,大量位於擴張區的餘震群也反映出受到地殼流體的影響。
第二、台灣中部的兩條MT剖面cc-1及cc-2。cc-1逆推結果將電阻率約248 ohm-m視為莫荷面處,可發現莫荷面深度自測線最西端的35km,逐漸上升至測站ccm-4的30km,然後維持相同的深度直到測站ccm-12,之後開始呈現向東漸深的態勢,一直到測線最東端,莫荷面下降至約50km的深度。cc-2逆推結果將電阻率約167 ohm-m視為莫荷面處,可發現莫荷面深度自測線最西端的31km,開始往東漸深;一直到測線最東端,莫荷面下降至約43km。
第三、金門有別於台灣為典型大陸地殼且處於弧後張裂階段,金門地區MT二維剖面的逆推結果中莫荷面深度約為32km上下,其莫荷面電阻率為129~219 ohm-m,莫荷面深度南北向沒有太大變化,但往西漸深。
摘要(英) Application of multi-site and multi-frequency impedance tensor decomposition to resolve the crustal structures of the MT data in central Taiwan and Kinmen area
Sung-Ching Chi
Abstract
The purpose of this study was to strip the shallow 3D resistivity anomalies by using the multi-site and multi-frenquency impedance tensor decomposition (MSMFITD) during the inversion of the MT 2D profile.
Computer simulations of the MSMFITD technique, after using the synthetic data coming from the MT 3D forward modeling, indicated that: 1) MT data sensitively responses to high conductors; 2) the MSMFITD is quite powerful to strip the MT data pertubated by the local 3D inhomogenities, and perfectly recovered the true 2D structures.
The application of the MSMFITD technique to the MT data collected from the central Taiwan and the Kinmen area obtained three important results:
1) Two resistivity anomalies were dectected around the hypocenter of the Chi-Chi earthquake, the high resistivity anomaly on the west and the low resistivity anomaly on the east. This resistivity pattern mostly indicates that deep-crustal fluids may participate in the rupture process of the Chi-Chi earthquake. A striking spatial correlation between the crustal conductor and occurrence of aftershocks beneath the Chelungpu fault suggests a postseismic pore pressure adjustment ongoing after the mainshock. Additionally, the hypocenter exhibits an electrical resistive zone, consistent very well with a predicted compact zone from a crustal deformation and transient fluid flow modeling.
2) There were two MT profiles in the central Taiwan, cc-1 and cc-2. The resistivity structure of the northen MT profile cc-1 indicated that the depth of the Moho, about 248 ohm-m of resistivity, is at about 35km to the west, uplifting to 30km between MT soundings ccm-4 to ccm-12, and then deepening to 50km to the eastern end of the profile. As to the southen profile cc-2, the depth of Moho, about 167 ohm-m of resistivity , is at about 31km to the west and then gradually deepen to about 43km to the east.
3) The Kinmen islet, which is quite different from the Taiwan island geologically, belongs to the continental crust in the stage of the backarc spreading. Based on the resistivity profiles, in Kinmen area the depth of Moho, 129~219 ohm-m of resistivity, is around 32km with little variation in NS direction, but a little bit deepen to the west.
關鍵字(中) ★ 大地電磁
★ 多站多頻分析
★ 台灣中部
★ 金門地區
★ 地殼
★ 電性構造
關鍵字(英) ★ Kinmen
★ central Taiwan
★ multi-site and multi-frequency impedance tensor
★ MT
★ crustal structures
論文目次 中文摘要 I
英文摘要 II
謝誌 II
目錄 IV
圖目 VI
符號表 X
第一章 緒論 1
1.1 台灣地質概述 1
1.2 深部電性構造之研究動機與研究方法 6
1.2.1 研究動機 6
1.2.2 研究方法概述 8
1.3 本文介紹 15
第二章 三維大地電磁資料的二維解釋 17
2.1 阻抗張量 17
2.2 大地電磁阻抗張量分解技術 22
2.3 同時多站多頻阻抗張量分解 24
2.4 三維模型驗證 25
第三章 台灣地區大地電磁測深資料分析 39
3.1電阻率分布與地體構造之關係 39
3.1.1地殼電阻率的影響因素 39
3.1.2震波決定的莫荷面 43
3.1.3莫荷面的電性特徵 45
3.2集集孕震帶電性構造 53
3.2.1 測區簡介 53
3.2.2 資料處理 56
3.2.3 地殼內低阻與餘震的相關性 62
3.3臺灣中部地區 66
3.3.1中部地區地質概述 66
3.3.2中部地區二維逆推分析 67
3.4金門地區 80
3.4.1金門地區概述 80
3.4.2金門地區一維逆推分析 80
3.4.3金門地區二維逆推分析 88
第四章 結論 100
4.1 結論 100
4.2 討論 103
參考文獻 104
附錄A:三維大地電磁順推 113
附錄B:用大地電磁法研究維性特徵 122
附錄C:MT測站張量分解結果 130
參考文獻 Angelier, J., Blanchet, R., Ho, C.S., and Le Pichon, X. (Editors), 1986. Geodynamic of the Eurasia-Philippine sea plate boundary. Tectonophysics, 125(1-3), 287 pp.Ernst, W.G., and Ho, C.S. (Editors), 1981. Plate tectonics and metamorphic geology. Mem. Geol. Soc. China, 4, 630 pp.
Barr, T.D., and Dahlen, F.A., 1989. Steady-state mountain building 2: thermal structure and heat budget. J. Geophys. Res., 94: 3923-3947.
Brace, W.F., 1971. Resistivity of saturated crustal rocks to 40 km based on laboratory measurements. In: The Structure and Physical Properties of the Earth's Crust, edited by J. G. Heacock, Amer. Geophys. Union Monogr., 14, pp. 243-256.
Brewitt-Taylor, C.R. and Weaver, J.T., 1976. On the finite difference solution of two-dimensional induction problem, Geophys. Res., 88, 2407-2412
Cagniard, L., 1953. Basic theory of the magnetotelluric method of geophysical prospecting. Geophysics, 18: 605-635.
Chave., A.D., and Smith, J.T., 1994. On electric and magnetic galvanic distortion tensor decompositions. J. Geophys. Res., 99(B3): 4669-4682.
Chen, C.H., Wang, W.H., and Teng, T.L., 2001. 3D velocity structure around the source area of the 1999 Chi-Chi, Taiwan, earthquake: before and after the mainshock, Bull. Seismol. Soc. Am., 91, 1013-1027.
Constable, S.C., Parker, R.L., and Constable, C.G., 1987. Occam's inversion: a practical algorithm for generating smooth models from electromagnetic sounding data. Geophysics, 52: 289-300.
Ernst, W.G., and Ho, C.S. (Editors), 1981. Plate tectonics and metamorphic geology. Mem. Geol. Soc. China, 4, 630 pp.
Groom, R.W., and Bailey, R.C., 1989. Decomposition of magnetotelluric impedance tensor in the presence of local three-dimensional galvanic distortion. J. Geophys. Res., 94: 1913-1925.
Groom, R.W., and Bailey, R.C., 1991. Analytical investigations of the effects of the near-surface three-dimensional galvanic scatterers on MT tensor decompsition. Geophysics, 56: 496-518.
Groom, R.W., Kurtz, R.D., Jones, A.G., and Boerner, D.E., 1993. A quantitative methodology for determining the dimensionality of conductivity structure and the extraction of regional impedance responses from magnetotelluric data. Geophys. J. Int., 115: 1095-1118.
Gupta, H.K., Sarma, S.V.S., Harinarayana, T., and Virupakshi, G., 1996. Fluids below the hypocentral region of Latur earthquake, India: geophysical indicators, Geophys. Res. Letts., 23, 1569– 1572.
Haak, V., and Hutton, R., 1986. Electrical resistivity in continental lower crust. In: Nature of Lower Continental Crust, edited by Dawson, J.B., Carswell, D.A., Hall, J., and Wedepohl, K.D., Geol. Soc. Spec. Publ. London, 24: 35-49.
Hestenes, M.R., and Stiefel, E., 1952. Methods of conjugate gradients for solving linear systems, J. Res. Natl. Bureau Stand., 49, 409-436.
Hickman, S., Sibson, R., and Bruhn, R., 1995. Introduction to special section: Mechanical involvement of fluids in faulting, J. Geophys. Res., 100, 12831-12840.
Ho, C.S., 1986. An introduction to the geology of Taiwan, explanatory text of the geological map of Taiwan, 2nd ed., Ministry of Economic Affairs, Taipei, Taiwan, (in Chinese).
Hohmann, G.W., 1971. Electromagnetic scattering from conductors in the earth near a line source of current, Geophysics, 36, 101-131
Hsu, I-Chi., 1964. Bouguer gravity anomalies over the Kinmen Island Fukien, Proceedings of the Geological Society of China, 7,94-96
Hyndman, R.D., Vanyan, L.L., Marquis, G. and Law, L.K., 1993. The origin of electrically conductive lower crustal continental crust: saline water or graphite? Phys. Earth Planet. Inter., 81, 325-344.
Inman, J.R., 1975. Resistivity inversion with ridge regression. Geophysics, 40: 798-817.
Kao, D., Orr, D., 1982. Magnetotelluric studies in the Market Weighton area of eastern England. Geophys. J . Roy. Astr. Soc., 70: 323-337.
Kawakami, N.Y., 1997. Local galvanic distortions in the central part of north-eastern Jappen. J. Geomag. Geoelectric., ,49: 1387-1400.
Jahn, B.M., Martineau, F., Peucat, J.J., and Cornichet, J., 1986. Geochronology of the Tananao Schist Complex, Taiwan, and its regional tectonic significance. Tectonophysics, 125: 103-124.
Jones, A.G., 1982. Observations of the electrical asthenosphere beneath Scandinavia. Tectonophysics, 90: 37-55
Jones, A.G., 1992. Electrical conductivity of the continental lower crust. In: Fountain, D.M., Arculus, R.J., and Kay, R.W. (Editors), Continental lower crust. Elsevier, New York, pp. 81-143.
Jones, A.G., and Groom, R.W., 1993. Strike angle determination from the magnetotelluric impedance tensor in the presence of noise and local distortion: rotate at your peril! Geophys. J. Int., 113: 524-534.
Jones, A.G., Groom, R.W., and Kurtz, R.D., 1993. Decomposition and modelling of the BC87 dataset. J. Geomag. Geoelectr., 45: 1127-1150.
Jones, A.G., and Hutton, R., 1979. A multi-station magnetotelluric study in southern Scotland - II. Monte-Carlo inversion of the data and its geophysical and tectonic implications. Geophys. J. R. astr. Soc., 56: 351-368.
Lallemand, S.E., and Tsien, H.H. (Editors), 1997. An introduction to active collision in Taiwan. Tectonophysics, 274(1-3), 274 pp.
Lallemand, S.E., Liu, C.S., and Font, Y., 1997. A tear fault boundary between the Taiwan orogen and the Ryukyu subduction zone. Tectonophysics, 274: 171-190.
Lee, T.1975. An integral equation and its solution for some two-and-three dimensional problems in resistivity and induced polarization, Geophys. J. R. astr. Soc.,42, 81-95
Lee, C.R., and Cheng, W.T., 1986. Preliminary heat flow measurements in Taiwan. The Fourth Circum-Pacific Energy and Mineral Resources Conference, Singapore.
Lee, M.K., Wang, C.H., Kao, H., and Wolf, L.W., 2004. Coseismic and postseismic hydrologic changes associated with the 1999 Chi-Chi earthquake, Taiwan, submitted.
Lin, C.H., Yeh, Y.H., Shih, R.C., Yen H.Y., and Huang, B.S., 1997. Investigation of deep crustal structures from wide-angle seismic data in the Taiwan Area. In: Program and expanded abstracts of 1997 annual meeting of Geological Society of China, Nat. Cheng-kung Univ., Tainan, Taiwan, pp. 376-378.
Lin, C.H., 2000. Thermal modeling of continental subduction and exhumation constrained by heat flow and seimiscity in Taiwan. Tectonophysics, 324, 189-201.
Jiracek, G.R., Reddig, R.P., and Kojima, R.K.,1989. Application of the Rayleigh-FFT technique to magnetotelluric modeling and correction, Phys. Earth planet. Int., 53, 365-375.
Kao, H., and Chen, W.P., 2000. The Chi-Chi earthquake sequence: active, out-of-sequence thrust faulting in Taiwan, Science, 288, 2346-2349.
Kanamori, H., and Brodsky, E.E., 2001. The physics of earthquakes, Physics Today, 54, 6, 34-40.
Kaufman, A.A., and Keller, G.V., 1981. The magnetotelluric sounding method. Elsevier Scientific Publishing Company, New York, 595 pp.
Kim K. H., 2003. Subsurface structure, seismicity patterns, and their implications to tectonic evolution in Taiwan, Ph.D. thesis, The University of Memphis, 159 pp.
Ma, K.F., Song, T.R.A., Lee, S.J., and Wu, H.I., 2000. Spatial slip distribution of the September 20, 1999, Chi-Chi, Taiwan, Earthquake (Mw 7.6) -- inverted from teleseismic data, Geophys. Res. Letts., 27, 3417-3420.
Ma, K.F., Wang, J.H., and Zhao, D., 1996. Three-dimensional seismic velocity structure of the crust and uppermost mantle beneath Taiwan. J. Phys. Earth, 44: 85-105.
Madden, T.R., and Mackie, R.L.,1989, Three-dimensional magnetolluric modeling and inversion, Proc. IEEE, 77, 318-333
Mackie, R.L., Livelybrooks, D.W., Madden, T.R., and Larsen, J.C., 1997. A magnetotelluric investigation of the San Andreas fault at Carrizo Plain, California, Geophys. Res. Letts., 24, 1847-1850.
Mackie, R.L., Madden, T.R., and Wannamaker, P.E., 1993, Three-dimensional magnetotelluric modeling using difference equations--Theory and comparisons to integral equation solutions, Geophysics, 58: 215-226.
McNeice, G.W. & Jones, A.G., 2001. Multisite, multifrequency tensor decomposition of magnetotelluric data, Geophysics, 66, 158–173.
Nabighian, M.N. (Editor), 1988. Electromagnetic methods in applied geophysics-theory, vol. 1, Soc. Explor. Geophys., Tulsa, Okla., 513 pp.
Newton, R.C., 1989. Metamorphic fluids in the deep crust. Annu. Rev. Earth Planet Sci., 17: 385-412.
Park, S.K., 1983. Three-dimensional magnetotelluric modeling and inversion, PhD dissertation, MIT, 185p
Potemra, T.A. (Editor), 1984. Magnetospheric currents. Am. Geophys. Union, 357 pp.
Ranganayaki, R.P., and Madden, T.R., 1980. Generalized thin sheet analysis in magnetotellurics, an extension of Price’s analysis, Geophys. J.R. astr. Soc., 60, 445-457.
Rau R. J. and F. T. Wu, 1995. Tomographic imaging of lithospheric structures under Taiwan, Earth Planet. Sci. Lett., 133, 517-532.
Seno, T., Stein, S., and Gripp, A.E., 1993. A model for the motion of the Philippine Sea plate consistent with NUVEL-1 and geological data. J. Geophys. Res., 98: 17941-17948.
Shankland, T. J., and M. E. Ander, 1983. Electrical conductivity, temperature, and fluids in the lower crust. J. Geophys. Res., 88: 9475-9484.
Spitz, S., 1985. The magnetotelluric impedance tensor properties with respect to rotation. Geophysics, 50: 1610-1617.
Stratton, J.A., 1941. Electromagnetic Theory, Mcgraw-Hill Book Co.
Suppe, J., 1987. The active Taiwan mountain belt. In: The Anatomy of Mountain Ranges. Princeton Univ. Press, Princeton, NJ, pp. 277-293.
Suppe, J., 1980. Imbricated structure of western foothills belt, south-central Taiwan, Petro. Geol. Taiwan, 17, 1-16.
Teng, L.S., 1990. Geotectonic evolution of late Cenozoic arc-continental collision in Taiwan. Tectonophysics, 183: 57-76.
Tsai, Y.B., 1986. Seismotectonics of Taiwan. Tectonophysics, 125: 17-37.
Tullis, J., Yund, R., and Farver, J., 1996. Deformation-enhanced fluid distribution in feldspar aggregates and implications for ductile shear zones. Geology, 24: 63-66
Vozoff, K., 1972. The magnetotelluric method in the exploration of sedimentary basins. Geophysics, 37: 98-141.
Vozoff, K., 1991. The magnetotelluric method. In: Nabighian, M.N. (Ed.), Electromagnetic methods in applied geophysics, vol. 2B, Soc. Explor. Geophys., Tulsa, Oklahoma.
Wang, J.H., Chen, K.C., and Lee, T.Q., 1994. Depth distribution of shallow earthquakes in Taiwan. J. Geol. Soc. China, 37: 125-142.
Wannamaker, P.E., Hohmann, G.W. and Ward, S.H., 1984. Magnetotelluric responses of three dimensional bodies in a layered earth, Geophysics, 49: 1517-1533.
Wannamaker, P.E., Doerner, W.M., Stodt, J.A., and Johnston, J.M., 1997. Subdued state of tectonism of the Great Basin interior relative to its eastern margin based on deep resistivity structure. Earth Planet. Sci. Lett., 150: 41-53.
Wannamaker, P.E., P.E., Stodt, J.A. and Rijo, L., 1987. A stable finite element solution for two-dimensional magnetotelluric modeling, Geophys. J. R. astr. Soc., 88, 277-296
Wannamaker, P.E., Wright, P.M., Zhou, Z.X., Li., X.B., and Zhao, J.X., 1991. Magnetotelluric transect of Long Valley caldera: resistivity cross-section, structural implications, and the limits of a 2-D analysis, Geophysics, 56, 926-940.
Wu, F.T., Rau, R.J., and Salzberg, D., 1995. Are we ready to critically evaluate hypotheses of Taiwan orogeny? In: Program and Expanded Abstracts of International Conference and 3rd Sino-Frence Symposium on Active Collision in Taiwan, Taipei, Taiwan, pp. 293-300.
Yardley, B.W.D., 1986. Is there water in the deep continental crust? Nature, 323: 111.
Yardley, B.W.D., and Valley, J.W., 1997. The petrologic case for a dry lower crust. J. Geophys. Res., 102: 12,173 - 12,185.
Zhang, P., Roberts, R.G., and Pedersen, L.B., 1987. Magnetotelluric strike rules. Geophysics, 51, 267-278.
Zhao, D., Kanamori, H., Negishi, H., and Wiens, D., 1996. Tomography of the source area of the 1995 Kobe earthquake: evidence for fluids at the hypocenter? Science, 274, 1891– 1894.
王筱嵐、陳浩維,1994。利用遠震接收函數法分析台灣地區莫荷面深度變化,九十三年度中國地質學會年會暨學術研討會論文集,195-201頁
白武明、馬麥寧、柳江琳,2000。地殼岩石波速和電導率實驗研究。岩石力學與工程學報,19 (增) : 899~904
呂浩江,2000。金門東南海域中強地震活動構造背景。地震地質,Vol.22, No.2,104-110頁。
呂崇嘉,1994。直流電阻法應用於水文地質研究。國立中央大學地球物理研究所博士論文,台灣中壢,195頁。
何春蓀,1982。台灣地體構造的演變。中華民國經濟部,台北,126頁。
何春蓀,1986。台灣地質概論(二版)。經濟部中央地質調查所,台北中和,164頁。
林蔚,2003。金門二萬五千分之一地質圖說明書,經濟部中央地質調查所,台北中和,71頁。
高弘、張建興和陳榮裕,2000,台灣地區寬頻地震站之接收函數分析,中央氣象局地震技術報告,第33 卷,87-136。
陳平護,1987。台灣西中部第四系之電性地層學研究。國立中央大學地球物理研究所博士論文,台灣中壢,168頁。
陳洲生,1989。暫態電磁法在台灣地區之應用研究-模型模擬及實例研究。國立中央大學地球物理研究所博士論文,台灣中壢,143頁。
陳建志,1998。大地電磁法應用於台灣地區地殼電性構造之研究。國立中央大學地球物理研究所博士論文,台灣中壢,146頁。
廖彥?,2005。利用接收函數法分析台灣深部地殼構造。國立中央大學地球物理研究所博士論文,碩士論文,台灣中壢,91頁。
周瑞燉,楊健一,1986。台灣西部沈積盆地之特性及其儲積油氣潛能。石油,第二十二卷,第一期,第2-25頁。
劉國棟,陳樂壽,1984。大地電磁測深研究。地震出版社,北京,405頁。
蔣進勇,魯新便,1993。用大地電磁測深資料確定構造走向。電磁方法研究與勘探(劉國棟、鄧前輝主編),北京,第156至159頁。
鄧屬予,1997。台灣的沈積岩。經濟部中央地質調查所,台北中和,235頁。
顏宏元,1991。台灣地區重力異常分佈及其在地體構造上之含義。國立中央大學地球物理研究所博士論文,台灣中壢,98頁。
謝文祺,2004。台灣中部二維密度構造之探討國立中央大學地球物理研究所碩士論文,台灣中壢,70頁。
顏滄波,1963。台灣大南澳片岩區中之變質帶。中國地質學會會刊,第六號,第72-74頁。
指導教授 陳洲生、楊潔豪
(Chow-Son Chen、Chieh-Hou Yang)
審核日期 2006-1-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明