博碩士論文 85246003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:3.22.248.208
姓名 胡明理(Ming-Li Hu)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 Zn:LiNbO3之晶體生長與其特性研究
(Growth and Properties of Zn:LiNbO3 Crystals)
相關論文
★ 富含矽奈米結構之氧化矽薄膜之成長與其特性研究★ 導波共振光學元件應用於生物感測器之研究
★ 具平坦化側帶之超窄帶波導模態共振濾波器研究★ 低溫成長鍺薄膜於單晶矽基板上之研究
★ 矽鍺薄膜及其應用於光偵測器之研製★ 低溫製備磊晶鍺薄膜及矽基鍺光偵測器
★ 整合慣性感測元件之導波矽基光學平台研究★ 矽基光偵測器研製與整合於光學波導系統
★ 光學滑鼠用之光學元件設計★ 高效率口袋型LED 投影機之研究
★ 在波長為532nm時摻雜鉬之鈦酸鋇單晶性質研究★ 極化繞射光學元件在高密度光學讀取頭上之應用研究
★ 不同溫度及波長之摻銠鈦酸鋇單晶性質研究★ 經氣氛處理之鈦酸鋇單晶其光折變性質及電荷移轉與波長的關係
★ 在不同溫度時氣氛處理鈦酸鋇單晶性質之比較★ 摻銠鈦酸鋇單晶的氧化還原與光折變性質
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文主要研究Zn:LiNbO3晶体之生長及其物理特性,MgO與ZnO的摻雜都可使LiNbO3的抗光強度提高100倍以上,但其摻雜之濃度閥值卻不同,前者為5.0 mol% Mg:LiNbO3;後者卻為7.5 mol% Zn:LiNbO3。二種摻雜之晶体,在濃度閥值所表現的物理特性比純LiNbO3優良,尤其是Zn:LiNbO3鐵電性矯頑場的降低,已接近計量比鈮酸鋰之矯頑場強度,有助於增加週期性電疇反轉結構之厚度及工程之改善。
吾人利用柴式提拉法生長不同濃度之Zn:LiNbO3晶体,藉由穿透率,晶格常數,熱差分析,倍頻量測,OH־吸收光譜,拉曼光譜及電滯迴線的測量來分析Zn:LiNbO3晶体的特性及其摻雜機制,主要獲得以下之結果:
(1).在生長較高濃度晶体時,易發生組份過冷之現象,在晶体尾端產生所謂的分格結構,此現象可以增加溫場之溫度梯度來改善。
(2).由Zn:LiNbO3晶体的X-ray晶格常數,穿透率及拉曼光譜對氧化鋅濃度之關係,可知Zn:LiNbO3晶体在氧化鋅濃度為2.0、5.0及7.5 mol%附近有摻雜機制上的變化。
(3).隨摻雜濃度之提高,在閥值濃度之晶体,其電疇反轉之起始電場可降低至矯頑場以下,但電疇反轉之時間增加,電疇反轉後達穩定之時間減少。自發極化大小對濃度之變化並不敏感。
(4).濃度7.5 mol% Zn:LiNbO3晶体之矯頑場可降低至5.0 kV/mm以下,內場可降低至0.6 kV/mm,其數值已非常接近計量比鈮酸鋰晶体之數值。有助於週期性極化結構之改善。
(5).Zn原子進入LiNbO3晶体之取代方式,在小於5.0 mol%時,Zn以不同比例同時取代Li位置之Li及NbLi,至5.0 mol%時,NbLi被取代完畢;濃度在5.0~7.5 mol%之間,則完全取代Li位置之Li;超過7.5 mol%,則以3:1之比例取代Li及Nb。
(6).Zn離子進入LN晶格中產生(ZnLi)+及(ZnNb)3-,與(NbLi)4+比較,對鐵電性矯頑場及內場之影響程度為(NbLi)4+> (ZnNb)3- > (ZnLi)+。
實驗證明,7.5 mol% Zn:LiNbO3晶体為優良之晶体材料,其生長容易,易於加工,穿透率高,結構緊緻,非線性光學性質佳,矯頑場及內場強度小,已接近計量比鈮酸鋰之性質,在微電疇結構工程上深具發展之潛力。
摘要(英) The growth and properties of Zn:LiNbO3 crystals were investigated.
關鍵字(中) ★ 矯頑場
★ 鐵電性
★ 非線性光學
★ 週期性極化
★ 掺鋁鈮酸鋰
關鍵字(英) ★ Period Poling
★ Zn
★ LiNbO3
論文目次 論文提要 ………………………………………………………... I
誌謝 ……………………………………………………………… III
目錄 ……………………………………………………………… IV
圖目錄 …………………………………………………………… VII
表目錄 …………………………………………………………… XII
第一章 緒論 …………………………………………… 1
1-1 前言 ……………………………………………………… 1
1-2 鈮酸鋰晶体之特性 ……………………………………… 4
1-2-1 鈮酸鋰晶体結構 ……………………………………… 4
1-2-2 鈮酸鋰晶体之物理性質 ……………………………… 8
1-3 鈮酸鋰晶体的摻雜 ………………………………………… 20
1-3-1 提高抗光強度之摻雜 …………………………………. 20
1-3-2 擴散的摻雜 ……………………………………………. 21
1-3-3 改善光折效應的摻雜 …………………………………. 22
1-3-4 稀土元素的摻雜 ………………………………………. 23
1-4 本論文研究之動機與目的 ………………………………… 24
第二章 晶体生長 …………………………………………………26
2-1 前言 ………………………………………………………… 26
2-1-1 CZ法介紹 …………………………………………… 26
2-1-2 熱場與溫場 ……………………………………………. 30
2-2 相圖 ………………………………………………………… 33
2-3 晶体生長與加工 …………………………………………… 36
2-4 結論 ………………………………………………………… 50
第三章 晶体基本性質量測 …………………………….……… 51
3-1 前言 ……………………………………………………… 51
3-2 實驗結果與討論 ………………………………………… 52
3-2-1 穿透光譜 ……………………………………………… 52
3-2-2 X-ray粉末繞射 ……………………………………… 54
3-2-3 熱差分析(DTA) ……………………………………… 57
3-2-4 倍頻量測 ……………………………………………… 60
3-2-5 氫氧根(OH־)吸收譜 ………………………………… 64
3-3 結論 ………………………………………………………… 71
第四章 拉曼光譜研究 ……………………………………………74
4-1 前言 ………………………………………………………… 74
4-2 實驗 ………………………………………………………… 77
4-3 實驗結果與討論 …………………………………………… 78
4-4 結論 ………………………………………………………… 86
第五章 鐵電性質研究 ……………………………………………89
5-1 前言 ………………………………………………………… 89
5-2 實驗 ………………………………………………………… 94
5-3 實驗結果與討論 …………………………………………… 97
5-3-1 LN晶体之鐵電性測量 ………………………………… 97
5-3-2 Mg:LN晶体之鐵電性測量 …………………………. 102
5-3-3 Zn:LN晶体之鐵電性測量 ………………………….. 106
5-4 結論 ………………………………………………………… 119
第六章 總結論 ……………………………………………………121
參考文獻 ………………………………………………………….126
參考文獻 1. W. H. Zachariasen, Skr. Norske Vid-Ada., Oslo, Mat. Naturv. No. 4 (1928)
2. B. T. Matthias and J. P. Remeika, “Ferroelectricity in the illmenite structure”,Phys. Rev. 76 (1949) 1886.
3. A. A. Ballman, “Growth of piezoelectric and ferroelectric materials by the Czochralski technique”, J. American Ceram. Soc. 48 (1965) 112.
4. P. Lerner, C. Legras et J. P. Duman, “Stoechiometric des monocristaux de metaniobate delithium”, J. Crystal Growth 3/4 (1968) 231.
5. R. L. Byer, J. F. Young and F. S. Feigelson, “Growth of high-quality LiNbO3 crystals from the congruent melt”, J. Appl. Phys. 41 (1970) 2320.
6. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric”, Phys. Rev. 127 (1962) 1918.
7. G. E. Peterson and A. Carneval, “93Nb NMR linewidths in nonstoichiometric lithium niobate”,J. Chem. Phys. 56 (1972) 4848.
8. S. C. Abrahams and P. Marsh, “Defect structure dependence on composition in lithium niobate”, Acta Crystallogr. B42 (1986) 61.
9. Q. Zhang and X. Feng, “Defect structures and densities of Mg-doped lithium niobate”, Phys. Stat. Sol. (a)121 (1990) 429.
10. B. C. Grabmaier, and F. Otto, “Growth and investigation of MgO-doped LiNbO3”, J. Crystal Growth 79 (1986) 682.
11. W. K. Burns, W. McElhanon and L. Goldberg, “Second harmonic generation in field poled, quasi-phase-matched, bulk LiNbO3”, IEEE Photonics Technol. Lett. 6 (1994) 252.
12. V. Pruneri, J. Webjörn, P. St. Russell and D. C. Hanna, “532 nm pumped optical parametric oscillator in bulk periodically poled lirhium niobate”, Appl. Phys. Lett. 67 (1995) 2126.
13. J. Rams, J. Olivares, P. J. Chandler and P. D. Townsend, “Second harmonic generation capabilities of ion implanted LiNbO3 waveguides”, J. Appl. Phys. 84 (1998) 5180.
14. L. Goldberg, R. W. McElhanon and W. K. Burns, “Blue light generation in bulk periodically field poled LiNbO3”, Electronics Lett. 31 (1995) 1576.
15. K. Kasemir, K. Betzler, B. Matzas, B. Tiegel, T. Wahlbrink, M. Wöhlecke, B. Gather, N. Rubinina and T. Volk, “Influence of Zn/In codoping on the optical properties of lithium niobate”, J. Appl. Phys. 54 (1998) 5191.
16. I. I. Naumova, N. F. Evlanova, O. A. Gliko and S. V. Lavrichev, “Czochralski grown lithium niobate with regular domain structure”, Ferroelectrics 190 (1997) 107.
17. K. Niwa, Y. Furukawa, S. Takekawa and K. Kitamura, “Growth and characterization of MgO doped near stoichiometric LiNbO3 crystals as a new nonlinear optical material”, J. Crystal Growth 208 (2000) 493.
18. Ch. Leroux, G. Nihoul, G. Malovichko, V. Grachev and C. Boulesteix, “Investigation of correlated defects in non-stoichiometric lithium niobate by high resolution electron microscopy”, J. Phys. Chem. Solids 59 (1998) 311.
19. J. H. Ro, T. H. Kim, J. H. Ro and M. Cha, “Defect study by sub-second relaxation of the internal field after polarization reversal in lithium niobate crystals”,J. Korean Phys. Soc. 40 (2002) 488.
20. H. Donnerberg, “Comments on the defect chemistry of Magnesium-doped lithium niobate (LiNbO3)”, J. Solid State Chem. 123 (1996) 208.
21. F. P. Safaryan, R. S. Feigelson and A. M. Petrosyan, “An approach to the defect structure analysis of lithium niobate single crystals”, J. Appl. Phys. 85 (1999) 8079.
22. H. Fay, W. J. Alford and H. M. Dess, “Dependence of second harmonic phase matching temperature in LiNbO3 crystals on composition”, Appl. Phys. Lett. 12 (1968) 89.
23. T. Volk, B. Maximov, T. Chernaya, N. Rubinina, M. Wöhlecke and V. Simonov, “Photorefractive properties of LiNbO3:Zn crystals related to the defect structure”, Appl. Phys. B72 (2001) 647.
24. N. Iyi, K. Kitamura, Y. Yajima, S. Kimura, Y. Furukawa and M. Sato, “Defect structure model of MgO-doped LiNbO3”, J. Phys. Chem. Solids 118 (1995) 148.
25. G. Kh. Kitaeva, K. A. Kuznetsov, and A. N. Penin and A. V. Shepelev, “Influence of small polarons on the optical properties of Mg:LiNbO3 crystals”, Phys. Rev. B65 (2002) 54304.
26. S. C. Abrahams, J. M. Reddy and J. L. Bernstein, “Ferroelectric lithium niobate. 3. Single crystal X-ray diffraction study at 24℃”, J. Phys. Chem. Solids 27 (1966) 997.
27. S. C. Abrahams, W. C. Hamilton and J. M. Reddy, “Ferroelectric lithium niobate. 4. Single crystal neutron diffraction study at 24℃”, J. Phys. Chem. Solids 27 (1966) 1013.
28. S. C. Abrahams, H. J. Levinstein and J. M. Reddy, “Ferroelectric lithium niobate. 5. Polycrystal X-ray diffraction study between 24℃ and 1200℃”, J. Phys. Chem. Solids 27 (1966) 1019.
29. H. D. Megaw, “A note on the structure of lithium niobate”, Acta. Cryst. A24 (1968) 583.
30. P. F. Bordui, R. G. Norwood, C. D. Bird and J. T. Carella, “Stoichiometry issues in single-crystal lithium tantalate”, J. Appl. Phys. 78 (1995) 4647.
31. A. Yariv and P. C. Yeh, “Optical Waves in Crystals”, John Wiley & Sons Inc. ,1984.
32. Yu. S. Kuz'minov, “Lithium Niobate Crystals”, 1996, Cambridge International Science Publishing.
33. P. K. Gallagher, H. M. O'Bryan, “Characterization of LiNbO3 by dilatometry and DTA”, J. Am. Ceram. Soc. 68 (1985) 147.
34. K. Kitamura, J. K. Yamamoto, N. Iyi, S. Kimura and T. Hayashi, “Stoichiometric LiNbO3 single crystal growth by double crucible Czochralski method using automatic powder supply system”, J. Crystal Growth 116 (1992) 327.
35. Y. Kong, J. Wen and H. Wang, “New doped lithium niobate crystal with high resistance to photorefraction ─ LiNbO3:In”, Appl. Phys. Lett. 66 (1995) 280.
36. Y. L. Lu, Y. Q. Lu and C. C. Xue, “Growth of Nd3+-doped LiNbO3 optical superlattice crystals and its potential applications in self-frequency doubling”, Appl. Phys. Lett. 68 (1996) 1467.
37. G. Malovichko, V. Grachev and O. Schirmer, “Interrelation of intrinsic and extrinsic defects – congruent,stoichiometric,and regularly ordered lithium niobate”, Appl. Phys. B 68 (1999) 785.
38. Y. Q. Lu, Y. L. Lu, C. C. Xue, X. F. Chen, J. J. Zhen, “Growth of a new self-frequency-doubling medium: optical superlattice Nd:MgO:LiNbO3 and its laser and nonlinear optical properties”, Proceeding SPIE 2897 (1996) 152.
39. L. E. Myers, R. C. Eckardt, M. M. Fejer and R. L. Byer, “Quasi-phasematched optical parametric oscillators using bulk periodically poled LiNbO3”, Proceeding SPIE 2379 (1995) 154.
40. E. P. Kokanyan, V. G. Babajanyan, G. G. Demirkhanyan, J. B. Gruber and S. Erdei, “Periodically poled structures in doped lithium niobate crystals”, J. Appl. Phys. 92 (2002) 1544.
41. L. J. Hu, Y. H. Chang, I. N. Lin, S. L. Tu and S. J. Yang, “Effects of heavy doping of MgO on characteristics of LiNbO3”, Jap. J. Appl. Phys. 30 (1991) 1412.
42. J. F. Nye, “Physical Properties of Crystals”,Clarendon Press, Oxford, 1957.
43. A. M. Prokhorov and Yu S. Kuz’minov, “Physics and Chemistry of Crystalline Lithium Niobate”, chapter 6, Adam Hilger, 1990
44. R. S. Weis and T. K. Gaylord, “Lithium niobate : Summary of physical properties and crystal structure”, Appl. Phys. A37 (1985) 191.
45. A. Yariv, “Optical Electronics”, 4th edition, chapter 9, Saunders College Publishing, 1991.
46. A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3”, Appl. Phys. Lett. 9 (1966) 72.
47. F. S. Chen, J. T. LaMacchia and D. B. Fraser, “Holographic recording in lithium niobate”, Appl. Phys. Lett. 13 (1968) 223.
48. N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin and V. L. Vinetskii, “Holographic storage in electrooptic crystals. I. Steady state.”, Ferroelectrics 22 (1979) 949.
49. 許煜寰等編, “鐵電與壓電材料”, 第二章, 科學出版社, 1978.
50. A. Savage, “Pyroelectricity and spontaneous polarization in LiNbO3”, J. Appl. Phys. 37 (1966) 3071.
51. F. Laurell, “Periodically poled materials for miniature light sources”, Opt. Mater. 11 (1999) 235.
52. R. L. Byer, “Quasi-phasematched nonlinear interactions and devices”, J. Nonlinear Opt. Phys. & Mater. 6 (1997) 549.
53. G. Rosenman and A. Skliar, “Ferroelectric domain engineering for nonlinear optical devices”, Crystallography Reports 44 (1999) 112.
54. 鍾維烈, “鐵電体物理學”, 第五章, 科學出版社, 1996.
55. G. D. Miller, Poster presentation at the Centor for Nonlinear Optical Materials Annual Review, August, 1994.
56. T. R. Volk, N. M. Rubinina, V. L. Pryalkin, V. V. Krasnikov and V. V. Volkov, “Optical and non-linear optical investigation in LiNbO3:Mg and LiNbO3:Zn”, Ferroelectrics 109 (1990) 345.
57. G. Zhong, J. Jin and Z. Wu, “Measurement of optically induced refractive index damage in lithium niobate”, In Proceedings of the 11th International Quantum Electronics (Institute of Electrical and Electronics Engineers, New York 1980) p. 631.
58. L. J. Hu, Y. H. Chang, S. J. Yang and I. N. Lin, “Defects of lithium niobate crystal heavy doped with MgO”, J. Crystal Growth 114 (1991) 191.
59. T. Volk, M. Wöhlecke and N Rubinina, “Optical-damage-resistant impurities (Mg, Zn, In, Sc) in lithium niobate”, Ferroelectrics 183 (1996) 291.
60. M.D. Serrano, V. Bermúdez, L. Arizmendi and E. Diéguez, “Determination of the Li/Nb ratio in LiNbO3 crystals grown by Czochralski method with K2O added to the melt”, J. Crystal Growth 210 (2000) 670.
61. Y. J. Lai, J. C. Chen and K. C. Liao, “Investigation of ferroelectric domain structures in the MgO:LiNbO3 fibers by LHPG”, J. Crystal Growth 198/199 (1999) 531.
62. S. Fouchet, A. Carenco, C. Daguet, R.Guglielmi and L. Riviere, “Wavelength dispersion of Ti induced refractive index change in LiNbO3 as a function of diffusion parameters”, J. Lightwave Tech. 5 (1987) 700.
63. J. L. Jackel, C. E. Rice, and J. Veselka, “Proton exchange for high-index waveguides in LiNbO3”,Appl. Phys. Lett. 41 (1982) 607.
64. P. Günter and J. P. Huignard, “Photorefractive Materials and Their Applications I ”, chapter 2, Springer-Verlag, 1988.
65. A. Adibi, K. Buse and D. Psaltis, “The role of carrier mobility in holographic recording in LiNbO3”, Appl. Phys. B72 (2001) 653.
66. P. Tayebati, “The effect of shallow traps on the dark storage of photorefractive grating in Bi12SiO20”, J. Appl. Phys. 70 (1991) 4082.
67. K. Buse, A. Adibi and Psaltis, “Non-volatile holographic storage in doubly doped lithium niobate crystals”, Nature 393 (1998) 665.
68. S. Ducharme, J. C. Scott, R. J. wieg and W. E. Moerner, “Observation of the photorefractive effect in a polymer”, Phys. Rev. Lett. 66 (1991) 1846.
69. V. Bermúdez, D. Callejo, F. Caccavale and E. Diéguez, “On the effect of Li diffusion in Er-doped bulk periodic poled lithium niobate crystals”, J. Crystal Growth 205 (1999) 328.
70. V. Bermúdez, M. D. Serrano and E. Diéguez, “Bulk periodic poled lithium niobate crystals doped with Er and Yb”, J. Crystal Growth 200 (1999) 185.
71. E. Cantelar, R. Nevado, G. Martín, J. A. Sanz-García, G. Lifante, F. Cussó, M. J. Hernádez and P. L. Pernas, “Optical properties of Er and Yb co-doped lithium niobate waveguides”, J. of Luminescence 87-89 (2000) 1096.
72. A. Grisard, E. Lallier, K. Polgár and A. Peter, “3 mm thick periodically poled lithium niobate”, CLEO CWA37 (2001) 291.
73. K. Kaigawa, T. Kawaguchi, M. Imaeda, H. Sakai and T. Fukuda, “Crystal structure of LPE-grown LiNbO3 epitaxial films”, J. Crystal Growth 177 (1997) 217.
74. R. S. Feigelson, “Epitaxial growth of lithium niobate thin films by the solid source MOCVD method”, J. Crystal Growth 166 (1996) 1.
75. K. Polgár, Á. Péter and I. Földvári, “Crystal Growth and stoichiometry of LiNbO3 prepared by the flux method”, Optical Materials 19 (2002) 7.
76. T. Fukuda and H. Hirano, “Growth and characteristics of LiNbO3 plate crystals”, Mat. Res. Bull. 10 (1975) 801.
77. R. S. Feigelson, W. L. Kway and R. K. Route, “Single crystal fibers by the laser heated pedestal growth method”, Optical Eng. 24 (1985) 1102.
78. 張克從,張樂潓, “晶体生長”, 科學出版社, 1981.
79. Brian R. Pamplin ed., “Crystal Growth”, 2nd edition, Pergamon Press Ltd. , 1980
80. Jan Czochralski, “Ein neues Verfahren zur Messung der Kristallisationsgeschwindigheit der Metalle”, Z. Phys. Chemie. 92 (1918) 219.
81. G. K. Teal and J. B. Little, “Growth of germanium single crystals”, Phys. Rev. 78 (1950) 647.
82. Donald T. J. Hurle, “Crystal pulling from the melt”, Springer-Verlag, 1993
83. 閔乃本, “晶体生長的物理基礎”, 上海科學技術出版社, 1982
84. 福田承生,干川圭吾 編著, “單結晶成長技術”, 培風館, 1999
85. A. Reisman, F. Holtzberg and E. Banks, “Reactions of the Group VB Pentoxides with Alkali Oxides and Carbonates. VII. Heterogeneous Equilibria in the System Na2O or Na2CO3-Nb2O5”, J. Am. Chem. Soc. 80 (1958) 37.
86. A. Reisman and F. Holtzberg, “Heterogeneous Equilibria in the Systems Li2O-, Ag2O-Nb2O5 and Oxide-Models”, J. Am. Chem. Soc. 80 (1958) 6503.
87. S.A. Fedulov, Z. I. Shapiro and P. B. Ladyzhinsky, “The growth of crystals of LiNbO3, LiTaO3, and NaNbO3 by the Czochralski method”, Sov. Phys. – Crystallogr. 10 (1965) 218.
88. K. Nassau and H. J. Levinstein, “Ferroelectric behaviour of lithium niobate”, Appl. Phys. Lett. 7 (1965) 69.
89. J. G. Bergman, A. Ashkin, A. A. Ballman, J. M. Dziedzic, H. J. Levinstein and R. G. Smith, “Curie temperature, birefrigence and phase-matching temperature variations in LiNbO3 as a function of melt stoichiometry”, Appl. Phys. Lett. 12 (1968) 92.
90. L. O. Svaasand, M. Eriksrud, A. P. Grande and F. Mo, “Crystal growth and properties of LiNb3O8”, J. Crystal Growth 18 (1973) 179.
91. L. O. Svaasand, M. Eriksrud, G. Nakken A. P. Grande, “Solid-solution range of LiNbO3”, J. crystal Growth 22 (1974) 230.
92. L. J. Hu, Y. H. Chang, F. S. Yen, S. P. Lin and I. N. Lin, “Crystal growth and characterization of heavily MgO-doped LiNbO3”, J. Appl. Phys. 69 (1991) 7635.
93. L. J. Hu, Y. H. Chang, M. L. Hu, M. W. Chang and W. S. Tse, “Effect of doping on the Raman modes in MgO-doped lithium niobate crystals”, J. Raman Spectro. 22 (1991) 333.
94. Y. Watanabe, T. Sota, K. Suzuki, N. Iyi, K. Kitamura and S. Kimura, “Defect structures in LiNbO3”, J. Phys. Chem. Matter 7 (1995) 3627.
95. U. Schlarb, M. Wöhlecke, B. Gather, A. Reichert, K. Betzler, T. Volk and N. Rubinina, “Refractive indices of Zn-doped lithium niobate”, Opt. Mater. 4 (1995) 791.
96. T. R. Volk, M. A. Ivanov, V. I. Pryalkin and N. M. Rubinina, “Photorefractive and nonlinear-optical properties of optical damage resistant LiNbO3:Zn crystals”, Ferroelectrics 126 (1992) 57.
97. D. Xue and K. Betzler, “Influence of optical-damage-resistant dopants on the nonlinear optical properties of lithium niobate”, Appl. Phys. B72 (2001) 641.
98. T. Volk, N. Rubinina and M. Wöhlecke,“Optical-damage-resistant impurities in lithium niobate”, J. Opt. Soc. Am. B11 (1994) 681.
99. 胡榮章, “MgO:LiNbO3單晶生長及其特性之研究”, 博士論文, 國立成功大學礦冶及材料科學研究所, 1991.
100. G. W. Fynn and W. J. A. Powell, “Cutting and polishing optical and electronic materials”, second edition, Adam Hilger, 1988.
101. R. Ueda and J. B. Mullin, “Crystal Growth and Characterization”, North-Holland Publishing Company, 1975.
102. M. Wöhlecke, G. Corradi and K. Betzler, “Optical methods to characterise the composition and homogeneity of lithium niobate single crystals”, Appl. Phys. B63 (1996) 323.
103. K. L. Sweeney, L. E. Halliburton, D. A. Bryan, R. R. Rice, R. Gerson and H. E. Tomaschke, “Threshold effect in Mg-doped lithium niobate”, Appl. Phys. Lett. 45 (1984) 805.
104. T. R. Volk and N. M. Rubinina, “Nonphotorefractive impurities in lithium niobate : magnesium and zinc”, Sov. Phys. Solid State 33 (1991) 674.
105. L. Kovács, G. Ruschhaupt, K. Polgár, G. Corradi and M. Wöhlecke, “Composition dependence of the ultraviolet absorption edge in lithium niobate”, Appl. Phys. Lett. 70 (1997) 2801.
106. D. Redfield and W. J. Burke, “Optical absorption edge of LiNbO3”, J. Appl. Phys. 45 (1974) 4566.
107. J. Plevert, M. Louer and D. Louer, “The ab initio structure determination of Cd3(OH)5(NO3) from X-ray powder diffraction data”, J. Appl. Cryst. 22 (1989) 470.
108. Y. Zhang, Y. H. Xu, M. H. Li and Y. Q. Zhao, “Growth and properties of Zn doped lithium niobate crystal”, J. Crystal Growth 233 (2001) 537.
109. F. Abdi, M. Aillerie, M. Fontana, P. Bourson, T. Volk, B. Maximov, S. Sulyanov, N. Rubinina and M. Wöhlecke, “Influence of Zn doping on electrooptical properties and structure parameters of lithium niobate crystals”, Appl. Phys. B68 (1999) 795.
110. D. K. Gallagher and H. M. O’Bryan, “Characterization of LiNbO3 by dilatometry and DTA”, J. Am. Ceram. Soc. 68 (1985) 147.
111. G. D. Boyd, R. C. Miller, K. Nassau, W. L. Bond and A. Savage, “LiNbO3: An efficient phase matchable nonlinear optical material”, Appl. Phys. Lett. 5 (1964) 234.
112. R. C. Miller, G. D. Boyd and A. Savage, “Nonlinear optical interactions in LiNbO3 without double refraction”, Appl. Phys. Lett. 6 (1965) 77.
113. R. G. Smith, K, Nassau and M. F. Galvin, “Efficient continuous optical second harmonic generation”, Appl. Phys. Lett. 7 (1965) 256.
114. A. Räuber, “Chemistry and Physics of lithium niobate”, Current Topic in Material Science (E. Kaldis, ed.), North-Holland, New York, 1978.
115. R. G. Smith, D. B. Fraser, R. T. Denton and T. C. Rich, “Correlation of reduction in optically induced refractive-index inhomogeneity with OH content in LiTaO3 and LiNbO3”,J. Appl. Phys. 39 (1968) 4600.
116. J. R. Herrington, B. Dischler, A. Räuber and J. Schneider, “An optical study of the stretching absorption band near 3 microns from OH־ defects in LiNbO3”, Solid State Commun. 12 (1973) 351.
117. L. Kovács, M. Wöhlecke, M. Jovanovic, K. Polgár and S. Kapphan, “Infrared absorption study of the OH vibrational band in LiNbO3 crystals”, J. Phys. Chem. Solids 52 (1991) 797.
118. Y. Kong, J. Xu, W. Zhang and G. Zhang, “The site ocupation of protons in lithium niobate crystals”, J. Phys. Chem. Solids 61 (2001) 1331.
119. H. H. Nahm and C. H. Park, “Microscopic structure of hydrogen impurity in LiNbO3”, Appl. Phys. Lett. 78 (2001) 3812.
120. Y. Kong, J. Xu, W. Zhang and G. Zhang, “Proton site occupation in congruent lithium niobate crystal determined by nuclear magnetic resistance”, Phys. Lett. A 250 (1998) 211.
121. M. Engelsberg, R. E. de Souza and L. H. Pacobahyba, “Structural determination of hydrogen site occupation in proton-exchanged LiNbO3 by nuclear magnetic resonance”, Appl. Phys. Lett. 67 (1995) 359.
122. Y. Kong, W. Zhang, X. Chen, J. Xu and G. Zhang, “OH־ absorption spectra of pure lithium niobate crystals”, J. Phys. : Condens. Matter 11 (1999) 2139.
123. O. F. Schirmer, O. Thiemann and M. Wöhlecke, “Deffects in LiNbO3 ― I. Experimental aspects”, J. Phys. Chem. Solids 52 (1991) 185.
124. H. J. Donnerberg, S. M. Tomlinson and C. R. A. Catlow, “Deffects in LiNbO3 ― II. Computer simulation”, J. Phys. Chem. Solids 52 (1991) 201.
125. H. Donnerberg, S. M. Tomlinson, C. R. A. Catlow and O. F. Schirmer, “Computer-simulation studies of extrinsic defects in LiNbO3 crystals”, Phys. Rev. B44 (1991) 4877.
126. A. V. Yatsenko, H. M. Ivanova-Maksimova and N. A. Sergeev, “NMR study of intrinsic defects in congruent LiNbO3. 2. “Overlapping” defects”, Physica B 254 (1998) 256.
127. K. Kitamura, Y. Furukawa and N. Iyi, “Progress in single crystal growth of LiNbO3 using double crucible Czochralski method”, Ferroelectrics 202 (1997) 21.
128. Y. Furukawa, K. Kitamura, S. Takekawa, K. Niwa, N. Iyi, I. Mnushkina, P. Guggenheim and J. M. Martin, “The correlation of MgO-doped near-stoichiometric LiNbO3 composition to the defect structure”, J. Crystal Growth 211 (2000) 230.
129. J. H. Ro, T. H. Kim, J. H. Ro and M. Cha, “Defect study by sub-second relaxation of the internal field after polarization reversal in lithium niobate crystals”, J. Korean Phys. Soc. 40 (2002) 488.
130. H. F. Wang, Y. Y. Zhu, S. N. Zhu and N. B. Ming, “Investigation of ferroelectric coercive field in LiNbO3”, Appl. Phys. A 65 (1997) 437.
131. V. Gopalan, T. E. Mitchell, Y. Furukawa and K. Kitamura, “The role of nonstoichiometry in 180° domain switching of LiNbO3 crystals”, Appl. Phys. Lett. 72 (1998) 1981.
132. D. H. Jundt, M. M. Fejer and R. L. Byer, “Optical properties of lithium-rich lithium niobate fabricated by vapor transport equilibration”, IEEE J. Quantum Electronics 26 (1990) 135.
133. Y. C. Ge and C. Z. Zhao, “Temperature dependent Raman scattering study on LiNbO3:Zn crystals”, Spectroscopy Lett. 31 (1998) 1659.
134. R. Mouras, M. D. Fontana, P. Bourson and A. V. Postnikov, “Lattice site of Mg ion in LiNbO3 crystal determined by Raman spectroscopy”, J. Phys. : Condens. Matter 12 (2000) 5053.
135. M. L. Hu, C. T. Chia, J. Y. Chang, W. S. Tse and J. T. Yu, “Low temperature Raman study of zinc-doped lithium niobate crystal powders”, Mater. Chem. Phys. 78 (2002) 358.
136. Y. Repelin, E. Husson, F. Bennani and C. Proust, “Raman spectroscopy of lithium niobate and lithium tantalate. Force field calculations”, J. Phys. Chem. Solids 60 (1999) 819.
137. 王仁卉,郭可信, “晶体學中的對稱群”, 科學出版社, 1990.
138. K. Uchino, “Ferroelectric devices”, ch. 11, Marcel Dekker Inc., 2000.
139. H. D. Megaw, “Ferroelectricity and crystal structure”, Acta Crystallogr. 7 (1954) 187.
140. J. Feng, Y. Y. Zhu and N. B. Ming, “Harmonic generations in an optical Fibonacci superlattice”, Phys. Rev. B42 (1990) 5578.
141. H. Ito, C. Takyu and H. Inaba, “Fabrication of periodic domain grating in LiNbO3 by electron beam writing for amplication of nonlinear optical process”, Electron. Lett. 27 (1991) 1221.
142. K. Shinozaki, T. Fukunaga, K. Watanabe and T. Kamijoh, “Self-quasi-phase-matched second-harmonic generation in the proton exchanged LiNbO3 optical waveguide with periodically domain-inverted regions”, Appl. Phys. Lett. 59 (1991) 510.
143. S. Thaniyavarn, T. Findakly, D. Booher and J. Moen, “Domain inversion effects in Ti-LiNbO3 integrated optical devices”, Appl. Phys. Lett. 46 (1985) 933.
144. 閔乃本, 洪靜芬, 馮端, “直拉法生長的LiNbO3單晶体中的生長條紋和鐵電疇組態間的對應關係”, 物理學報, Acta Physica Sinica 31 (1982) 104.
145. 薛英華, 閔乃本, 朱勁松, 馮端, “聚片多疇LiNbO3晶体的倍頻效應”, 物理學報, Acta Physica Sinica 32 (1983) 1515.
146. 洪靜芬, 楊永順, “電流調製法制備聚片多疇LiNbO3晶体”, 光學學報, Acta Optica Sinica 4 (1984) 821.
147. F. Duan, M. Nai-Ben, H. Jing-Fen and W. Wen-Shan, “Ferroelectric crystals with periodic laminar domains”, Ferroelectrics 91 (1989) 9.
148. Y. L. Lu, L. Mao, S. D. Cheng, N. B. Ming and Y. T. Lu, “Second harmonic generation of blue light in LiNbO3 crystal with periodic ferroelectric domain structures”, Appl. Phys. Lett. 59 (1991) 516.
149. Y. L. Lu, Y. Q. Lu, X. F. Cheng, C. C. Xue and N. B. Ming, “Growth of optical superlattice LiNbO3 with different modulating periods and its applications in second harmonic generation”, Appl. Phys. Lett. 68 (1996) 2781.
150. I. I. Naumova, N. F. Evlanova, O. A. Gliko and S. V. Lavrichev, “Czochralski-grown lithium niobate with regular domain structure”, Ferroelectrics 190 (1997) 107.
151. J. Webjörn, V. Pruneri, P. St. J. Russell, J. R. M. Barr and D. C. Hanna, “Quasi-phase-matched blue light generation in bulk lithium niobate, electrically poled via periodic liquid electrodes”, Electronics Lett. 30 (1994) 894.
152. M. Houé, P. D. Townsend, “An introduction to methods of periodic poling for second-harmonic generation”, J. Phys. D : Appl. Phys. 28 (1995) 1747.
153. G. D. Miller, R. G. Batchko, M. M. Fejer and R. L. Byer, “Visible quasi-phasematched harmonic generation by electric-field-poled lithium niobate”, Proceeding SPIE 2700 (1996) 34.
154. M. Yamada and M. Saitoh, “Fabrication of a periodically poled laminar domain structure with a pitch of a few micrometers by an external electric field”, J. Appl. Phys. 84 (1998) 2199.
155. L. H. Peng, Y. C. Fang and Y. C. Lin, “Polarization switching of lithium niobate with giant internal field”, Appl. Phys. Lett. 74 (1999) 2070.
156. B. D. Sinclair, “Frequency-doubled microchip lasers”, Opt. Mater. 11 (1999) 217.
157. F. Laurell, “Periodically poled materials for miniature light sources”, Opt. Mater. 11 (1999) 235.
158. J. J. Zayhowski, “Microchip lasers”, Opt. Mater. 11 (1999) 255.
159. A. Kuroda, S. Kurimura and Y. Uesu, “Domain inversion in ferroelectric MgO:LiNbO3 by applying electric fields”, Appl. Phys. Lett. 69 (1996) 1565.
160. K. Mizuuchi, K. Yamamoto and M. Kato, “Harmonic blue light generation in bulk periodically poled MgO:LiNbO3”, Electronics Lett. 32 (1996) 2091.
161. L. H. Peng, Y. C. Fang and Y. C. Lin, “Zinc-oxide doping effects in polarization switching of lithium niobate”, Appl. Phys. Lett. 78 (2001) 4.
162. K. Nakamura, J. Kurz, K. Parameswaran and M. M. Fejer, “Periodic poling of magnesium-oxide-doped lithium niobate”, J. Appl. Phys. 91 (2002) 4528.
163. H. H. Wieder, J. Appl. Phys. 30 (1959) 1010.
164. G. Arlt and H. Neumann, “Internal bias in ferroelectric ceramics : origin and time dependence”, Ferroelectrics 87 (1988) 109.
165. V. Gopalan and M. C. Gupta, “Internal fields in lithium tantalate crystals”, Proceeding SPIE 2700 (1996) 28.
166. V. Gopalan and M. C. Gupta, “Origin and characteristics of internal fields in LiNbO3 crystals”, Ferroelectrics 198 (1997) 49.
167. K. Kitamura, Y. Furukawa, K. Niwa, V. Gopalan and T. E. Mitchell, “Crystal growth and low coercive field of 180° domain switching characteristics of stoichiometric LiTaO3”, Appl. Phys. Lett. 73 (1998) 3073.
168. M. Yamada, N. Nada, M. Saitoh and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second harmonic generation”, Appl. Phys. Lett. 62 (1993) 435.
169. G. D. Miller, Ph. D. dissertation, “Periodically poled lithium niobate :modeling,fabrication,and nonlinear-optical performance”, Department of Electrical Engineering, Standford University, 1998.
170. V. Gopalan, N. A. Sanford, J. A. Aust, K. Kitamura and Y. Furukawa, “Crystal growth, characterization, and domain studies in lithium niobate and lithium tantalate ferroelectrics”, chapter 2, Handbook of Advanced Electronic and Photonic Materials and Devices, Vol. 4, H. S. Nalwa ed., Academic Press, 2001.
171. S. Chao, W. Davis, D. D. Tuschel, R. Nichols, M. Gupta and H. C. Cheng, “Time dependence of ferroelectric coercive field after domain inversion for lithium-tantalate crystal”, Appl. Phys. Lett. 67 (1995) 1066.
172. T. S. Chernaya, B. A. Maksimov, T. R. Volk, N. M. Rubinina and V. I. Simonov, “Zn atoms in lithium niobate and mechanism of their insertion into crystals”, JEPT Letters 73 (2001) 103.
173. J. D. Joannopoulos,R. D. Meade and J. N. Winn, “Photonic Crystals : Modeling the Flow of Light”,Princeton University Press, 1995
174. S. Mingaleev and Y. Kivshar, “Nonlinear photonic crystals : Toward all-optical technologies”, Optics & Photonics News 13 (2002) 48.
175. T. A. Ramadan,M. Levy and R. M. Osgood Jr, “Electro-optic modulation in crystal-ion-slicing z-cut LiNbO3 thin films”, Appl. Phys. Lett. 76 (2000) 1407.
指導教授 張正陽(Jenq-Yang Chang) 審核日期 2004-1-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明