博碩士論文 85324017 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:19 、訪客IP:18.222.125.171
姓名 吳政勳(Cheng-Shing Wu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 一個高速╱低複雜度旋轉方法的統一設計架構:角度量化的觀點
(A UNIFIED DESIGN FRAMEWORK OF HIGH-SPEED/LOW-COST ROTATION ENGINES:AN ANGLE QUANTIZATION PERSPECTIVE)
相關論文
★ 低雜訊輸出緩衝器設計及USB2實體層的傳收器製作★ 低雜訊輸出緩衝器設計及USB2實體層的時脈回復器製作
★ 適用於通訊系統之李德所羅門軟性智慧財產模組自動產生器★ 適用於RSA公匙密碼系統之高效能Montgomery模組
★ 適用於非對稱數位用戶迴路系統之有效率的時域等化器演算法★ 以改良式向量旋轉器為核心的遞迴式傅立葉模組設計
★ 應用於通訊系統的內嵌式數位訊號處理器架構★ 應用於數位儲存示波器之100MHz CMOS 寬頻放大器電路設計
★ 具有QAM/VSB模式的載波及時序回復之數位積體電路設計★ 應用於通訊系統中數位信號處理器之模組設計
★ 第二代高速數位用戶迴路中維特比解碼器之FPGA實現★ 應用於藍芽系統之CMOS射頻前端電路設計
★ 具有QAM/VSB 模式之多重組態可適應性等化器的設計與實現★ 適用於高速通訊系統之可規劃多模式里德所羅門編解碼模組
★ 應用於橢圓曲線密碼系統之低複雜性有限場乘法器設計★ 適用於通訊系統之內嵌式數位訊號處理器
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 向量旋轉(Vector Rotation)在許多數位信號處理(DSP)的應用中被廣泛地使用。在
這篇論文中,我們首先引入一個新的設計概念,稱之為角度量化(Angle
Quantization)。當所需的旋轉角度是事先預知的情形下,角度量化的概念可用來當
作一個設計的指標。以此角度量化為基礎,我們建立了一個統一的低複雜度╱高速度旋
轉演算法的設計架構(Design Framework)。數個現有的向量旋轉演算法,例如傳統座
標旋轉數位計算器(CORDIC)演算法、角度重新編碼(Angle Recoding)演算法、修改
之座標旋轉數位計算器(MVR-CORDIC)演算法、以及延伸基礎角度集合(EEAS)演算法
等均可套入這個統一的設計架構;這些演算法亦組成了所謂的向量旋轉座標旋轉數位計
算器家族(Vector Rotational CORDIC Family)。此外,對於上述的演算法我們也提
出了其相對應的最佳化搜尋演算法(Optimization Searching Algorithm)、比例修正
(Scaling Operation)、訊號量化雜訊比增進法(SQNR Refinement)、系統化的設計
流程(Systematic Design Flow)以及超大型積體電路架構。所有的演算法均有設計範
例來加以說明,且輔以完整的電腦模擬來證明其正確性。以此新的設計架構為基礎,我
們不僅可以實現高速度╱低複雜度的向量旋轉超大型積體電路架構,同時無須犧牲在定
點實現(Fixed-point Implementation)時的準確度。
摘要(英) Vector rotation is the key operation employed extensively in many digital
signal processing (DSP) applications. In this dissertation, we introduce a new
design concept called Angle Quantization (AQ). It can be used as a design
index for vector rotational operation, where the rotational angle is known in
advance. Based on the AQ process, we establish a unified design framework for
cost-effective low-latency rotational algorithms and architectures. Several
existing works, such as conventional CORDIC, AR-CORDIC, MVR-CORDIC, and
EEAS-based CORDIC algorithm, can be fitted into the design framework, forming a
Vector Rotational CORDIC Family. In addition, for MVR-CORDIC and
EEAS-based CORDIC algorithm, we address their corresponding optimization
searching algorithms, scaling operations, SQNR refinement schemes, systematic
design flow, and VLSI architectures. All the statements are supported by
extensive computer simulations and design examples. Based on the new design
framework, we can realize high-speed/low-complexity rotational VLSI circuits,
whereas without degrading the precision performance in fixed-point
implementations.
關鍵字(中) ★ 座標旋轉數位計算器
★ 超大型積體電路
★ 向量旋轉
關鍵字(英) ★ Vector Rotation
★ VLSI
★ CORDIC
論文目次 Abstract i
Acknowledgement iii
{1}Introduction}{1}
{1.1}Digital Filters}{2}
{1.2}Orthogonal Transformations}{6}
{1.3}Research Focus and Contributions}{9}
{1.3.1}Vector Rotation}{9}
{1.3.2}Definition of Vector Rotation}{10}
{1.3.3}Main Contributions}{11}
{1.4}Thesis Organization}{14}
{2}Angle Quantization Process and CORDIC Algorithm}{16}
{2.1}Concept of Angle Quantization}{16}
{2.1.1}Angle Quantization Process and SPT}{18}
{2.2}Conventional CORDIC Algorithm}{19}
{3}Modified Vector Rotational CORDIC Algorithm}{25}
{3.1}The MVR-CORDIC Algorithm}{26}
{3.2}Searching Algorithms and Comparisons}{29}
{3.2.1}Searching Algorithms}{29}
{3.2.2}Comparison of Computational Complexity and Error Performance}{32}
{3.3}Relationship between Error Performance and Design Parameters}{35}
{3.3.1}Error performance vs. number of elementary angles N}{36}
{3.3.2}Error performance vs. restricted iteration number Rm}{37}
{3.3.3}Error performance vs. searching block length D}{38}
{3.4}Selective Pre-rotation Scheme}{38}
{3.4.1}Conventional Pre-rotation Scheme}{38}
{3.4.2}Selective Pre-rotation Scheme}{40}
{3.4.3}Design Example and Simulation}{40}
{3.5}Selective Scaling Scheme}{43}
{3.5.1}Conventional Scaling Operations}{43}
{3.5.2}Selective Scaling Scheme}{45}
{3.5.3}Design Example}{46}
{3.6}Iteration-tradeoff Scheme and Design Flow}{47}
{3.6.1}Iteration-tradeoff Scheme for Rm and Rs}{47}
{3.6.2}Design Flow for the MVR-CORDIC Algorithm}{49}
{3.6.3}Design Example}{51}
{3.7}VLSI Implementation of MVR-CORDIC}{54}
{3.7.1}Iterative MVR-CORDIC Structure}{54}
{3.7.2}Parallel and Pipelined MVR-CORDIC Structure}{56}
{4}Extended Elementary Angle Set-Based CORDIC Algorithm}{58}
{4.1}Extended Elementary-Angle Set (EEAS)}{59}
{4.2}Searching Algorithms of the EEAS Scheme}{63}
{4.2.1}Greedy Algorithm}{64}
{4.2.2}Trellis-based Searching (TBS) Algorithm}{64}
{4.2.3}Error Bound of TBS Algorithm}{69}
{4.2.4}Comparison of Computational Complexity}{71}
{4.3}Performance Comparisons}{74}
{4.3.1}EEAS Scheme vs. AR Technique {74}
{4.3.2}Trellis-based Searching (TBS) Algorithm vs. Greedy Algorithm}{75}
{4.3.3}Combination of EEAS Scheme and the TBS Algorithm}{77}
{4.4}Scaling Phase of the EEAS Scheme}{78}
{4.4.1}The Extended Type-II (ET-II) Scaling Operation}{78}
{4.4.2}Simulations}{79}
{4.5}Combination of Micro-rotation Phase and Scaling Phase}{80}
{4.5.1}Design Example}{80}
{4.5.2}Simulation of complete EEAS-based CORDIC Algorithm}{81}
{4.6}VLSI Structures of the EEAS-based CORDIC Algorithm}{83}
{5}Vector Rotational CORDIC Family}{87}
{5.1}Link AQ Process with Conventional CORDIC algorithm}{87}
{5.2}Link AQ Process with the AR Technique}{89}
{5.3}Link AQ Process with MVR-CORDIC Algorithm}{91}
{5.4}Link AQ Process with EEAS-based CORDIC Algorithm}{92}
{5.5}Generalized EEAS Scheme}{93}
{5.6}Family of Vector Rotational CORDIC Algorithm}{94}
{6}Conclusions and Future Researches}{96}
{A}Analysis of SQNR}{100}
參考文獻 1. S Haykin Adaptive Filter Theory New Jersey Prentic Hall Inc 3rd ed
2. E C Ifeachor and B W Jervis Digital signal processing A practical approach Addison
Wesley
3. J D Markel and A H Gray Linear prediction of speech New York Springer Verlag
4. A V Oppenheim and R W Schafer Discrete time signal processing New Jersey Prentice
Hall
5. P P Vaidyanathan A uni ed approach to orthogonal digital lters and wave digital lters
based on the LBR two pair extraction IEEE Trans Circuits Syst pp July
6. A Y Wu K J R Liu and A Raghupathy System architecture of an adaptive recon g
urable DSP computing engine IEEE Trans Circuits Syst VideoTechnol vol pp
Feb
7. J G Chung and K K Parhi Pipelined lattiec and wave digital recursive lters Norwell
Kluwer Academic Publishers
8. J W Cooley and J W Tukey An algorithm for machine calculation of complex Fourier
series Math Computation vol pp April
9. S V Vaseghi Advanced signal processing and digital noise reduction Wiley Teubner
10. I Pitas Digital image processing algorithms and applications John Wiley Sons Inc
11. Asymmetric digital subscriber line ADSL metallic interface ANSI Std T
12. Very high speed rate digital subscriber line VDSL metallic interface T E ANSI Doc
uments Nov
13. K R Rao and P Yip Discrete cosine transform algorithm advantages applications
Academic Press San Diego Calif
14. Information technology Digital compression and coding of continuous tone still images
Requirements and guidelines ISO IEC ISO IEC
15. Information technology Coding of moving pictures and associated audio for digital storage
media at up to about Mbit s ISO IEC
16. M R Portno Time frequency representation of digital signals and systems based on short
time Fourier analysis IEEE Trans Acoust Speech Signal Processing vol pp
Feb
17. O Riol and M Vetterli Wavelets and signal processing IEEE Signal Processing Magazine
vol pp Oct
18. Y H Hu and Z Wu An e cient CORDIC array structure for the implementation of discrete
cosine transform IEEE Trans on Signal Processing vol pp Jan
19. J H Hsiao L G Ghen T D Chiueh and C T Chen High throughput CORDIC based
systolic array design for the descrete cosine transform IEEE Trans Circuits Syst Video
Technol vol pp Jan
20. A M Despain Fourier transform computers using CORDIC iterations IEEE Trans on
Computers vol pp Oct
21. A M Despain Very fast Fourier transform algorithms for hardware implementation IEEE
Trans on Computers vol pp May
22. A Madisetti A Kwentus and A J Willson A sine cosine direct digital frequency synthe
sizer using an angle rotation algorithm in IEEE International Solid State Circuits Confer
ence Digest of Technical Papers st ISSCC pp
23. E Grayver and B Daneshrad Direct digital frequency synthesis using a modi ed CORDIC
in Proc IEEE Int Symp Circuits and Systems vol Monterey CA USA pp
24. J Hormigo J Villalba and E Zapata Interval sine and cosine functions computation
based on variable precision CORDIC algorithm in th IEEE Symposium on Computer
Arithmetic Proceedings pp
25. J Vankka M Kosunen J Hubach and K Halonen A CORDIC based multicarrier QAM
modulator in Global Telecommunications Conference pp
26. J Vankka M Kosunen I Sanchis and K Halonen A multicarrier QAM modulator IEEE
Trans Circuits Syst II vol pp Jan
27. K Hwang Computer arithmetic Principles architecture and design New York Wiley
28. H Samueli An improved search algorithm for the design of multiplierless FIR lters with
power of two coe cients IEEE Trans Circuits Syst vol pp July
29. Y C Lim R Yang D Li and J Song Signed power of two term allocation scheme for
the design of digital lters IEEE Trans Circuits Syst II vol pp May
30. C S Wu and A Y Wu Modi ed vector rotational CORDIC MVR CORDIC algorithm
and architecture IEEE Trans Circuits Syst II vol pp June
31. C S Wu and A Y Wu A novel rotational VLSI architecture based on extended elementary
angle set CORDIC algorithm in Proc IEEE nd IEEE Asia Paci c ConferenceonASICs
Cheju South Korea pp
32. C S Wu A Y Wu and S J Jou A new CORDIC algorithm and architecture based
on extended elementary angle set and trellis based searching scheme submitted to IEEE
Trans Signal Processing for publication
33. G David Fornet Jr The Viterbi algorithm Proceedings of the IEEE vol pp
March
34. S Lin and Daniel J Costello Jr Error control coding Prentice Hall
35. B Sklar Digital communications fundamentals and applications Prentice Hall
36. Y H Hu and S Naganathan An angle recoding method for CORDIC algorithm implemen
tation IEEE Trans on Computers vol pp Jan
37. A Y Wu and C S Wu A uni ed view for vector rotational CORDIC algorithms and
architectures based on angle quantization approach to appear in IEEE Trans Circuits
Syst I
38. J E Volder The CORDIC trigonometric computing technique IRE Trans on Electronic
Computers vol pp Sept
39. J S Walther A uni ed algorithm for elementary functions Spring Joint Computer Conf
pp
40. Y H Hu CORDIC based VLSI architectures for digital signal processing IEEE Signal
Processing Magazine pp July
41. Y H Hu The quantization e ects of the CORDIC algorithm IEEE Trans on Signal
Processing vol pp April
42. M D Ercegovac and T Lang Redundant and on line CORDIC application to matrix
triangularization and SVD IEEE Trans on Computers vol pp June
43. N Takagi T Asada and S Yajima Redundant CORDIC methods with a constant scale
factor for sine and cosine computation IEEE Trans on Computers vol pp
Sept
44. G L Haviland and A A Tuszynski A CORDIC arithmetic processor chip IEEE Trans
on Computers vol no pp
45. H M Ahmed J M Delosme and M Morf Highly concurrent computing structures for
matrix arithmetic and signal processing IEEE Computer vol no pp
46. J M Delosme A processor for two dimensional symmetric eigenvalue and sigular value
arrays in Proc th Asilomar Conf on Circ Syst and Compu pp
47. C L Chen and A N W Jr A trellis search algorithm for the design of FIR lters with
signed powers of two coe cients IEEE Trans Circuits Syst II vol pp Jan
48. A P Chandrakasan S Sheng and R W Brodersen Low power CMOS digital design
IEEE J Solid State Circuits vol pp April
49. Y C Lim and S R Parker FIR lter design over a discrete power of two coe cient space
IEEE Trans Acoust Speech Signal Processing vol pp June
50. Q Zhao and Y Tadakoro A simple design FIR lters with power of two coe cients IEEE
Trans Circuits Syst vol pp May
指導教授 周世傑、吳安宇
(Shyh-Jye Jou、An-Yeu Wu)
審核日期 2002-7-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明