博碩士論文 85341005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:35.172.233.2
姓名 劉得任(De-Rin Liu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 微卡計於液膜交互作用力量測之應用----微脂粒系統穩定度之探討
相關論文
★ 類澱粉胜肽聚集行為之電腦模擬★ 溶解度參數計算及量測於HPLC純化胜肽程序之最佳化研究
★ 利用恆溫滴定微卡計量測蛋白質分子於溶液中之第二維里係數與自我聚集之行為★ 利用SPRi探討中性DNA探針相較於一般DNA探針在低鹽雜交環境下之優勢
★ 矽奈米線場效電晶體多點之核酸檢測研究★ 使用不帶電中性核酸探針於矽奈米線場效電晶體檢測去氧核醣核酸與微核醣核酸之研究
★ 運用nDNA 修飾引子於PCR及qPCR平台以提升專一性之研究★ 設計中性DNA引子及探針以提升PCR與qPCR專一性之研究
★ 使用中性不帶電去氧核醣核酸探針於矽奈米線場效電晶體檢測微核醣核酸之研究★ 使用不帶電中性核酸探針於原位雜交技術檢測微核醣核酸之研究
★ 設計不帶電中性核酸探針於矽奈米線場效電晶體來改善富含GC鹼基核醣核酸之檢測專一性★ 合成5’-MeNPOC-2’-deoxynucleoside p-methoxy phosphoramidite以作為應用於原位合成之新穎性中性核苷酸之研究
★ 三團聯共聚物及鎂離子對微脂粒物理穩定性之影響及其機制探討★ 微卡計在固液吸附機制的研究-嵌印高分子及離子交換樹脂在近等電點時的吸附機制
★ Ribonuclease A 於逆微胞系統中的復性及其界面現象之研究★ 三團聯聚合物(PF-127)和磷脂質間交互作用力量測和微脂粒穩定度之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 關於微脂粒聚集融合行為之研究,微脂粒脂雙層結構以及微脂粒粒子間交互作用力兩者都扮演著一相當重要之影響,本研究利用流場剪應力以及脂雙層磷脂質游離釋放實驗討論微脂粒脂雙層結構之穩定性,同時利用恆溫滴定微卡熱量計測量微脂粒懸浮液之稀釋熱並將稀釋熱配合簡單數學模式之演譯計算找出微脂粒懸浮液系統之第二維里係數b2,利用第二維里係數觀點說明微脂粒粒子間交互作用行為,此外更配合Square-Well 能井方程式說明微脂粒粒子間聚集融合行為之能量障壁參數(b2/B0)。
就微脂粒粒子間交互作用力,實驗結果顯示PC微脂粒粒子間淨交互作用力場為斥力場,而且其有效斥力場範圍可遠及其自身半徑長之80倍(約8
摘要(英) The behavior aggregation and fusion of loposome, both the structure of lipid bilayer and the interactions between liposomes play a very important role. In this research, the stability of lipid bilayer structure is discussed by using the shear stress coupled with the lipid released from the liposomal bilayer. At the same time, the dilution heat of liposomal suspension can be measured by isothermal titration calorimetry (ITC). In addition, the second virial coefficient b2 in the system of liposomeal suspension are also determined by using a mathematical model plus the measurement data from dilution heat, moreover, the behavior of interactions between liposomes can be explained from the standpoint of the second virial coefficient. Furthermore, the energy barrier parameter (b2/B0) relating to the aggregation and fusion behavior of liposomes can be interpreted in conjunction with Square-Well energy equation.
Our experimental data indicates that the net interaction force between PC liposomes are repulsive. Also, the effective range of repulsive force between PC liposomes can reach as faraway as 80 times of their diameter (around 8 x 10-4cm). So far as the incorporation of cholesterol into the PC bilayer, our experimental results also indicates that the absolute zeta potential becomes more negative, this data indicate that the repulsive electrostatic force between liposomes have become larger. In addition, the values of b2 and b2/B0 have become larger as well. Another way of explaining this data that incorporating cholesteril into the PC bilayer promotes the net repulsive force (2.5 times of its effective repulsive force) between PC liposomes, in addition to the increment of energy barrier in respect of the behavior of aggregation and fusion. Moreover, incorporating cholesterol into the PC bilayer make the liposome more rigid and sustains more severs shear stress in our shear forces studies; in other words, incorporating cholesterol into the PC bilayer can promote the stability of PC bilayer structure. More importantly, incorporating cholesterol into the bilayer can reduce the amount of free lipid, pointing out that this incorporation can increase the interactive force of lipid molecules and enhancing the stability of PC bilayer. Finally, our experimental results also indicated that the incorporation of cholesterol into the bilayer would reduce the liposomal size changes. In other words, incorporation of cholesterol can inhibite the behavior of aggregation and fusion and enhance the physical stability of liposome.
This work also reveals that temperature and PC liposomal stability are correlated with each other. The stability of PC liposomes are likely to decline with a rise in the temperature, and the elevated temperature effect is evidence of the rigidity or curvature of the PC liposome. Furthermore, the repulsive interaction potential (or energy barrier) between the PC liposome declines with a rise in temperature
The second part of this research is to examines how PEG2000-grafted lipid affect the surface properties of the PC liposomal bilayer membrane by the zeta potential and interaction potential measurement by microcalorimetry. In this studies Liposome were prepared from mixtures of egg- phosphatidylcholine (PC), cholesterol and distearoyl-phosphatidylethanolamine covalently attached poly (ethylene glycol) of molecular weight 2000 (DSPE-PEG2000).
Experimental results demonstrated that the absolute value of the zeta potential of PEG2000-grafted liposome decreased from
關鍵字(中) ★ 物理穩定度
★ 第二維里係數
★ 膽固醇
★ 界面位能
★ 交互作用力
★ 微脂粒
關鍵字(英)
論文目次 中文摘要………………………………………………………………I
英文摘要……………………………….……………………………IV
目錄………………………………………………………….….………VIII
圖表索引……………………………………………………….….…IX
符號說明……………………………………………….……………XII
第壹章: 前言………………………………………………………1
第貳章: 研究原理……………………………………………...4
2-1 微脂粒之簡介…………………………………….……………4.
2-1-1 微脂粒之組成…………………………………….……….4
2-1-2 微脂粒之形成與機制………………………..…………12
2-1-3 微脂粒之製備方法………………………………………17
2-1-4 微脂粒的物理結構分類………………………………..21
2-1-5 微脂粒之代謝機制─微脂粒與細胞作用機制….23
2-2 微脂粒膜之特性…………………………………………….26
2-2-1 相轉移………………………………………………………26
2-2-2 相分離………………………………………………………29
2-3 微脂粒之穩定度……………………………………………30
2-3-1微脂粒之生理穩定度…………………………………..30
2-3-2微脂粒之化學穩定度…………………………………30
2-3-2-1氧化………………………………………………….31
2-3-2-2水解…………………………………………………..32
2-3-3 微脂粒之物理穩定度…………………………………36
2-3-3-1 微脂粒的聚集……………………………………..38
2-3-3-2 微脂粒的融合………………………………………40
2-3-3-3 陽離子添加對微脂粒物理穩定性之影響…..43
2-4 微脂粒懸浮液系統微脂粒粒子間交互作用……….52
2-4-1 微脂粒脂雙層間之交互作用力………………………..52
2-4-1-1 凡得瓦爾引力…………………………………………52
2-4-1-2 庫侖靜電斥力…………………………………………54
2-4-1-3 水合作用力…………………………………………….58
2-4-1-4 立體空間力…………………………………………….61
2-4-2 添加物對微脂粒脂雙層(或微脂粒)間之交互作用
影響…………………………………………………………..63
2-4-2-1 膽固醇之影響……………………………………….63
2-4-2-2 親水性高分子(Lipid-PEG)之影響…………..69
2-4-3 微脂粒粒子間之交互作用力………………………… 71
2-4-4 膠體懸浮液中膠質粒子之交互作用……………75
2-4-4-1 維里方程式及維里係數………………………76
2-4-4-2 膠體懸浮液系統膠質粒子第二維里係數數學
模式之討論………………………………………77
2-4-4-3 膠體懸浮液系統膠質粒子第二維里係數與膠
質粒子間交互作用之討論……………………86
第參章: 研究動機暨實驗目的………………………90
第肆章: 實驗設備與實驗設計………………………96
4-1 實驗設備…………………………………………………………96
4-1-1 實驗藥品……………………………………………………96
4-1-1-1緩衝溶液之配製…………………………………….96
4-1-1-2 微脂粒之製備……………………………………….96
4-1-1-3 其它化學藥品……………………………………….97
4-1-2 儀器設備…………………………………………………….98
4-1-2-1黏度儀………………………………………………….98
4-1-2-2 恆溫滴定微卡熱量計…………………………….101
4-1-2-3 其它儀器設備……………………………………..104
4-2 實驗設計…………………………………………………106
4-2-1 游離磷脂質之釋放……………………………..106
4-2-2 剪應力實驗……………………………………….108
4-2-3 微脂粒界面電位及粒徑之量測…………….108
4-2-4 微脂粒懸浮液之稀釋熱-恆溫滴定微卡熱量計
…………………………………………………..………….109
4-2-5 第二維里系數之計算…………………………110
第伍章: 實驗結果與討論………………………..112
5-1 膽固醇之嵌入微脂粒脂雙層對微脂粒之影響
……………………………………………………………….……..114
5-1-1 磷脂質(PC)游離釋放之影響…………………114
5-1-2 剪應力流場對微脂粒脂雙層之磷脂質游離釋放之
影響…………………………………………………..117
5-1-3 剪應力(shear stress)對微脂粒結構之影響.122
5-1-4 微脂粒界面電位……………………………………123
5-1-5 微脂粒粒子交互作用-ITC量測微脂粒懸浮液之稀
釋熱實驗部份………………………………………126
5-1-6 微脂粒之粒徑變化………………………………….132
5-2 PEG-lipid之嵌入微脂粒脂雙層對微脂粒之
影響……………………………………………………….140
5-2-1 剪應力(shear stress)對微脂粒結構之影響140
5-2-2 界面電位…………………………………………………142
5-2-3 微脂粒粒子交互作用-ITC量測微脂粒懸浮液之稀
釋熱實驗部份………………………………………….143
5-2-4 微脂粒之粒徑變化……………………………………..146
第陸章 結論……………………………………………………….150
參考資料………………………………………………………………153
附錄…………………………………………………………………… 176
圖表索引
圖2.1 微脂粒之結構示意圖…………………………………….4
圖2.2 磷脂質的結構示意圖…………………………………….5
圖2.3 磷脂基膽鹼示意圖………………………………………..6
圖2.4 磷脂基乙醇氨示意圖…………………………………….7
圖2.5 磷酸基甘油示意圖………………………………………..9
圖2.6 常見磷脂質之結構示意圖……………………………..11
圖2.7 微脂粒形成機制示意模型圖…………………………..16
圖2.8 超音波震盪法製備微脂粒示意圖…………………….19
圖2.9 微脂粒的物理結構分類示意圖………………………..23
圖2.10 磷脂質脂肪酸鏈的反式、鈍式結構圖……………….26
圖2.11 磷脂質的DSC圖形………………………………………..29
圖2.12 脂質的氧化反應機制示意圖…………………………….32
圖2.13 磷脂醯膽鹼(PC)的水解反應機制………………………33
圖2.14 pH值對磷脂質水解速率的影響……………………….35
圖2.15 膠體粒子之距離─位能示意圖…………………………..37
圖2.16 微脂粒聚集融合程序示意圖……………………………..42
圖2.17 膠體粒子layer 分佈示意圖………………………………55
圖2.18 膽固醇嵌入於脂雙層中位置結構示意圖……………..64
圖2.19 膽固醇嵌入於脂雙層中對相轉移溫度之影響………65
圖2.20 脂雙層間作用力量測的儀器示意圖……………………66
圖2.21 微脂粒粒子間之交互作用距離-位能示意圖…………74
圖4.1 Cone/Plate 黏度儀及水浴法控溫示意圖……………100
圖4.2 恆溫滴定微卡計-恆溫部分儀器外觀圖……………..103
圖4.3 恆溫滴定微卡計-注射與反應器之外觀圖…………..104
圖5.1 脂雙層中不同嵌入膽固醇量於不同溫度系統下,隨
時間變化磷脂質游離釋放圖…………………………….116
圖5.2 脂雙層中不同嵌入膽固醇量於277K儲存溫度環境
下受其到剪應率流場300sec-1,五分鐘環境下,隨
貯存時間變化磷脂質游離釋放圖……………………119
圖5.3 雙層中不同嵌入膽固醇量於277K儲存溫度環境下
受其到剪應率流場800sec-1,五分鐘環境下,隨貯
存時間變化磷脂質游離釋放圖……..……………….120
圖5.4 脂雙層中不同嵌入膽固醇量於310K儲存溫度環境
下受其到剪應率流場300sec-1,五分鐘環境下,隨
貯存時間變化磷脂質游離釋放圖……………………121
圖5.5 不同剪應力對不同嵌入膽固醇莫爾量PC微脂粒其
於不同溫度下粒徑之變化……………………………..123
圖5.6 微脂粒懸浮液於ITC稀釋熱之圖譜……………….130
圖5.7 儲存溫度277K下,不同莫爾含量膽固醇之PC微
脂粒其隨儲存時間之粒徑變化圖………………….136
圖5.8 儲存溫度298K下,不同莫爾含量膽固醇之PC
微脂粒其隨儲存時間之粒徑變化圖……………….137
圖5.9 儲存溫度310K下,不同莫爾含量膽固醇之PC微
脂粒其隨儲存時間之粒徑變化圖………………….138
圖5.10 不同剪應力對不同DSPE-PEG2000量微脂粒其於不
同溫度下,粒徑之變化……………………………….141
圖5.11 儲存溫度298K下,不同含量DSPE-PEG2000之微
脂粒其隨時間變化之粒徑變化圖………………..148
圖5.12 儲存溫度310K下,不同含量DSPE-PEG2000之微
粒其隨時間變化之粒徑變化圖……………………149
表2.1 不同碳鏈與頭基之磷脂質的相轉移溫度(Tc) ………28
表5.1 不同嵌入膽固醇量之微脂粒於不同溫度下之界面電
位值……………………………………………………………125
表5.2 不同嵌入膽固醇量之微脂粒於不同溫度下之b2, B0
及b2 / B0值…………………………………………………..131
表5.3 膽固醇之嵌入與無膽固醇嵌入之微脂粒系統其b2值
比較表………………………………………………………..131
表5.4 相同組成之微脂粒於不同溫度下其b2值比較表…132
表5.5 298K系統下,不同膽固醇莫爾含量之PC微脂粒其
隨時間變化之b2值……………………………………….139
表5.6 310K系統下,不同膽固醇莫爾含量之PC微脂粒其
隨時間變化之b2值……………………………………….139
表5.7 不同嵌入DSPE-PEG2000量之微脂粒於不同溫度下
之界面電位值………………………………………………143
表5.8 不同嵌入DSPE-PEG2000量之微脂粒於不同溫度下
之b2, B0及b2 / B0 值…………………………………….145
參考文獻 (1) A. D. Bangham, M. M. Standish, and J. C. Watkins, “Diffusion of Univalent Ions across the Lamellae of Swollen Phosopholipids”, J. Mol. Biol., 13, 238-252(1965)
(2) F. Frezard, and A. Garniersuillerot, “Permeability of Lipid Bilayer to Anthracyline Derivatives—Role of the Bilayer Composition and of the Temperature”, Biochem. Biophys. Acta. , 1389, 13-22(1998)
(3) R. Chang, S. Nir, and F. R. Poulain, “Analysis of Binding and Membrane Destabilization of Phospholipid-Membranes by Surfactant Apoprotein-B”, Biochem. Biophys. Acta. , 1371, 254-264(1998)
(4) S.C Semple, A. Chonn, and P. R. Cullis, “Interactions of Liposomes and Lipid-Based Carrier Systems with Blood Proteins-Relation to Clearance Behavior in Vivo”, Adv. Drug. Delivery Rev., 32, 3-17(1998)
(5) X. M. Zeng, G. P. Martin, and C. Marriott, “The Controlled Delivery of Drugs to the Lung”, Int. J. Pharm. ,124,149-164(1995)
(6) D. D. Lasic and D. Needham, “The Stealth Liposome:A Prototypical Biomaterial”, Chem. Rev. , 95, 2601-2628(1995)
(7) M. C. Woodle, M. S. Newman, and J. A. Cohen, “Sterically Stabilized Liposomes:Physical and Biological Properties”, J. Drug. Target. , 2, 397-403(1994)
(8) L. Trevino, F. Frezard, J. P. Roll, and M. Postel and J. G. Riess, “Novell Liposome Systems Based on the Incorporation of (Perfluoroalkyl)alkenes(FmHnE) into the Bilayer of Phospholipid Liposomes”, Colloids Surf. 88, 223-233(1994)
(9) F. Frezard, C. Santaella, P. Vierling , and J. G. Riess, “Fluorinated Phospholipid-Based Vesicles as Potential Drug Carriers:Encapsulation/Sustaining of Drugs and Stability in Human Serum”, Biomater. Artif. Cells. Immobil. Biotechnol. , 22, 1403-1408(1994)
(10) J. J. Collins and M. C. Phillips, “The Stability and Structure ofn Cholesterol-rich Codispersions of Cholesterol abd Phosphatidyl -choline”, J. Lipid Res. , 23, 291-298(1982)
(11) R. P. Rand, V. A. Parsegian and J. A. C. Henry, “The Effect of Cholesterol on Measured Interaction and Compressibility of Dipalmitoylphosphatidylcholine Bilayers”, CAN. J. BIOCHEM., 58, 959-968, (1980)
(12) E. F. Labelle and E. Racker, “Cholesterol Stimulation of Penetration of Unilamellar Liposomes by Hydrophobic Compounds”, J. Membrane Biol., 31, 301-315(1977)
(13) S. Raffy and J. Teissie, “Control of Lipid Membrane Stability by Cholesterol Content”, Biophys. J., 76, 2072-2080(1999)
(14) D. D. Lasic, “Mechanisms of Liposome Formation”, J. Lipid Res. , 5, 431-441(1995)
(15) G. V. Betageri, S. A. Jenkins, B. S. Daniel and L. Parsons : Liposome Drug Delivery Systems, Technomic Publishing Company, Inc. 1993.
(16) E. E. Szebeni, D. H. Hauser and K. H. Winterhalter, “Encapsulation of Hemolglobin on Phospholipid liposomes︰Characterization and Stability”, Biochemistry, 24, 2827-2832(1985)
(17) L. Rossi, S. Alema, P. Calissano and E. Marra, “Interaction of Different froms of Hemoglobin with Artificial Lipid Membranes”, Biochim. Biophys. Acta. , 375, 477-482(1975)
(18) W. P. Piertrzak and I. F. Miller, “Oxidative Interaction between Hemoglobin and Egg Lecithin Liposomes”, Biomat. Art. Cells, Art. Org., 17, 563-581(1981)
(19) I. F. Miller, “Synthetic Red Blood Cells from Lipid Encapsulated Hemoglobin”, Chem. Eng. Commun., 9, 363-370(1981)
(20) R. L. Hamilton, J. G. Luke, S. S. Guo, M. C. Williams and R. L.
Havel, “Unilamellar Liposomes made with the French Oressure
Cell︰A Simple Preparation and Semiquantitative Technique”, J.
Lipid Res., 21. 981-992(1980)
(21)B. P. Gaber, P. Yager, J. P. Shriedan and E. L. Chang, “Encapsulatiom
of Hemoglobin in Phospholipid Vesicles”, FEBS Lett., 153, 285-
288(1983)
(22)D. W. Deamer and A. D. Bangham, “ Large Volume Liposomes by
An Ether Vaporization Method ” Biochem. Biophys. Acta., 443, 629-
634 (1976)
(23)S. Kim and G, M, Martin, “Preparation of Cell-Size Unilamellar Liposomes with High Captured Volume and Defined Size Distribution”, Biochem. Biophys. Acta., 646, 1-9(1981)
(24)B. Jopski, V. Pirkl, H. W. Jaroni, R. Schubert and K. H. Schmidt, “Perparation of Hemoglobin-containing Liposomes Using Octylglucoside and Octyltetraoxyeyhylene”, Biochem. Biophys. Acta., 978, 79-84(1989)
(25)A. D. Bangham, M. M. Standish and C. J. Watkins, “Diffusion of Univalent Ions across the Lamellae of Swollen Phospholipids”, J. Mol. Biol., 13, 238-252(1965)
(26)G. V. Betageri, S. A. Jenkins and D. L. Parsons, Liposome Drug Delivery Systems, New York, 1993
(27)E. R. C. New, Liposomes:a Practical Approach, Oxford University Press, New York, 1990
(28)K. M. G. Taylor and R. M. Morris, “Thermal Analysis of Phase Transition Behaviour in Liposomes”, Thermochimica Acta., 248, 289-301(1995)
(29)R. L. Biltonen and D. Lichtenberg, “The Use of Differential Scanning Calorimetry as a Tool to Characterize Liposome Preparations”, Chem. Phys. Lipids. , 64, 129-142(1993)
(30)M. C. Woodle, M. S. Newman, and F. J. Martin, ”Liposome Leakage Blood Circulation: Comparison of Adsorbed Block Copolymers with Covalent Attachment of PEG”, Int. J. Pharm., 88, 327-334(1992)
(31)M. Mercadal, J. C. Domingo, M. Bermudez, M. Mora, and M. A. D. Madariage, ”N-Palmitoylphosphosphstidyaethanolamine Stabilizes Liposomes in the Presence of Human Serum: Effect of Lipidic Composition and System Characterization”, Biochem. Biophys. Acta. ,1235,281-288(1995)
(32)J. D. Rossi, and B. A. Wallace, ”Binding of Fibranectin to Phospholipid Vesicle”, J. Chem. , 258, 3327-3331(1983)
(33)T. Koga and J. Terao, ”Antioxidant Behaviors of Vitamin E Analogues in Unilamellar Vesicles”, Biosci. Biochem., 60, 1043-1045(1996)
(34) S. S. Abu-Zaid and A. A. Shabama, ”Effect of Cholesterol of Liposomal Membranes on Their Peroxidation During Storage”, Biochem. Biophys. Acta., 40, 385-397(1981)
(35)M. Grit, W. J. M. Underberg and D. J. A. Crommelin, “ Hydrolysis of Saturated Soybean Phosphatidylcholine in Aqueous Liposome Dispersions”, J. Pharm. Sci., 82, 362-366(1995)
(36)B. Y. Zaslavsky, A. A. Borovskaya, and S. V. Rogozhin, ”Effect of Lipid-Composition on Hydrophobic Properties of Liposomes”, Mol. Cell Biochem., 60, 2, 131-136(1984)
(37)S. Nir, J.Bentz and N. Duzgunes, “Two Modes of Reversible Vesicle Aggregation:Particle Size and the DLVO Theory ”, J. Colloid Interface Sci. , 84, 266-269(1981)
(38)S. Nir, J. Bentz, J. Wilschut and N. Duzgunes, “Aggregation and Fusion of Phospholipid Vesicles”, Prog. Surf. Sci., 13, 1-124(1983)
(39)H. Minami, T. Inoue and R. Shimozawa, “Kinetics of Divalent Cation-Induced and pH-Induced Aggregation of Dimyristoylphosatidylserine Vesicles”, J. Colloid Interface Sci., 164, 9-15(1994)
(40)A. McLaughlin, W. K. Eng, G. Vaio, Tazewell Wilson and S. McLaughlin, “Dimethonium, A Divalent Cation that Exerts Only a Screening Effect on the Electrostatic Potential”, J. Membrane Biol., 76, 183-193(1983)
(41)H. Minami, T. Inoue and R. Shimozawa, “Beryllium Ion Can Induce the Aggregation of Phosphatidylcholine Vesicles”, Langmuir, 12, 3574-3579(1996)
(42)F.J. Carrion, , A.D. Maza and J.L. Parra, “The influence of ionic strength and lipid bilayer charge on the stability of liposome”, J. Colloid Interface Sci. 164 78 (1994)
(43)A. C. McLaughlin, C. Grathwohl, S. G. A. McLaughlin, “The Adsorption of Divalent Cations To Phosphatidylcholine Bilayer Membranes” Biochim. Biophys. Acta., 513, 338-357(1978)
(44)S. A. Tatulian, “Fluidity-Dependence of Membrane Adhesiveness Can Be Explained by Thermotropic Shifts in Surface-Potential”, Biochim. Biophys. Acta., 901, 161-165 (1987)
(45)J. Marra and J. Israelachvili, “Direct Measurements of Forces Between Phosphatidylcholine and Phosphatidylethanolamine Bilayers in Aqueous-Electrolyte Solutions”, Biochemistry, 24, 4608-4618(1995)
(46)D. Marsh, “Water-Adsorption Isotherms and Hydration Forces for Lysolipids and Diacyl Phospholipids”, Biophys. J., 170, 1093-1100(1989)
(47)D. D. Lasic, Liposomes:From Physics to Applications, London 1993
(48)J. Wilschut, N. Duzgunes and D. Papahadjopoulos, “Studies on the Mechanism of Membrane-Fusion - Kinetics of Calcium-Ion Induced Fusion of Phosphatidylserine Vesicles Followed by a New Assay for Mixing of Aqueous Vesicle Contents”, Biochemistry, 19, 6011-6021(1980)
(49)S. Ohki, S. Roy, H. Ohshima and K. Leonards, “Monovalent Cation-Induced Phospholipid Vesicle Aggregation︰Effect of Ion Binding”, Biochemistry, 23, 6126-6132(1984)
(50)C. R. Peled, G. Braun and S. Nir, “Time of Equilibration in Reversible Aggregation of Particles”, J. Colloid Interface Sci., 169, 204-213(1995)
(51)J. Rosenberg, N. Duzgunes and C. Kayalar, “Comparsion of Two Liposome Fusion Assays Monitoring the Intermixing of Aqueous Contents and Membrane Components”, Biochim. Biophys. Acta., 735, 173-180(1983)
(52)E. L. Bearea, N. Duzgunes, D. S. Friend and D. Papahadjopoulso, “Fusion of Phospholipid Vesicles Arrested by Quick-Freezing the Question of Lipidic Particles as Intermediates in Membrane Fusion”, Biochim. Biophys. Acta., 693, 93-98(1982)
(53)J. Wilschut, N. Duzdunes and D. Papahadjopoulos, “Calcium / Magnesium Specificity in Membrane Fusion:Kinetics of Aggregation and Fusion of Phosphatidylserine Vesicles and the Role of Bilayer Curvature”, Biochemistry, 20, 3126-3133(1981)
(54)J. Bentz S. Nir and J. Wilschut, “Mass Action Kinetics of Vesicle Aggregation and Fusion”, Colloids. Sur., 6, 333-363(1983)
(55)J. Bentz, S. Nir and J. Wilschut, “Mass-Action Kinetics of Phosphatidylserine Vesicle Fusion As Monitored by Coalescence of Internal Vesicle Volumes”, Biochemistry, 19, 6030-6036(1980)
(56) J. Bentz, N. Duzgunes and S. Nir, “Temperature-Dependence of
Divalent-Cation Induced Fusion of Phosphatidylserine Liposomes —
Evaluation of the Kinetic Rate Constants”, Biochemistry, 24, 1064-
1072(1985)
(57) J. Wilschut, S. Nir, J. Scholma and D. Hoekstra, “Kinetics of Ca2+-Induced Fusion of Cariolipin-Phosphatidylcholine Vesicles:Correlation between Vesicle Aggregation, Bilayer Destabilization, and Fusion”, Biochemistry, 24, 4630-4636(1985)
(58) S. Ohki, “Effects of Divalent Cations, Temperature, Osmotic Pressure Gradient, and Vesicle Curvature on Phosphatidylserine Vesicle Fusion”, J. Membrane Biol., 77, 265-275(1984)
(59) J. Bentz, N. Duzgunes and S. Nir, “Temperature Dependence of Divalent Cation Induced Fusion of Phosphatidylserine Liposomes:Evaluation of the Kinetic Rate Constants”, Biochemistry, 24, 1064-1072(1985)
(60) S. W. Hui, S. Nir T. P. Stewart, L. T. Boni and S. K. Huang, “Kinetic Measurements of Fusion of Phosphatidylserine-containing Vesicles by Electron Microscopy and Fluorometry”, Biochim. Biophys. Acta., 941, 130-140(1988)
(61) D. C. Miller and G. P. Dahl, “Early Events in Calcium-Induced Liposome Fusion”, Biochim. Biophys. Acta., 689, 165-169(1982)
(62) R. P. Rand, B. Kachar and T. S. Reese, “Dynamic Morphology of Calcium-Induced Interactions between Phosphatidylserine Vesicles”, Biophys. J., 47, 438-489(1985)
(63) B. L. Gamon, J. W. Virden and J. C. Berg, “The Aggregation Kinetics of an Electrostatically Stabilized Diplmitoyl Phosphatidylcholine Vesicle System”, J. Colloid Interface Sci., 132,125-138(1989)
(64) S. Ohki, N. Duzgunes and K. Leonards, “Phospholipid Vesicle Aggregation - Effect of Mono-Valent and Divalent Ions”, Biochemistry, 21, 2127-2133(1982)
(65) J. Bentz, N. Duzgunes and S. Nir, “Kinetics of Divalent Cation Induced Fusion of Phosphatidylserine Vesicles:Correlation between Fusogenic Capacities and Binding Affinities”, Biochemistry, 22, 3320-3330(1983)
(66) T. Yoshimura and K. Aki, “Sodium-Inducd Aggregation of Phosphatidic Acid and Mixed Phospholipid Vesicles”, Biochim. Biophys. Acta., 813, 167-173(1985)
(67) H. Minami, T. Inoue and R. Simozawa, “Kinetics of Beryllium-Induced Aggregation of Acidic Phospholipid Vesicles”, J. Colloid Interface Sci., 178, 581-585(1996)
(68) K. K. Eklund, J. E. Takkunen and P. K. J. Kinnunen, “Cation-Induced Aggregation of Acidic Phospholipid Vesicles:The Role of Fatty Acid Unsaturation and Cholesterol”, Chem. Phys. Lipids., 57, 59-66(1991)
(69) H. Matsumura, K. Watanabe and K. Furusawa, “Flocculation Behavior of Agg Phosphatidylcholine Liposomes Caused by Ca2+ Ions”, Colloids Surf., 98, 175-184(1995)
(70) H. Minami, T. Inoue and R. Shimozawa, “Aggregation Kinetics of Dimyristoyphosphatidylglycerol Vesicles Induced by Divalent Cations”, J. Colloid Interface Sci. , 158, 460-465(1993)
(71) T. Nakashima, M. Shigematus, Y. Ishibashi, G. Sugihara and T. Inoue, “Stopped-Flow Kinetic-Study on Aggregation of Dilauroylphosphatidic Acid Vesicles Induced by Divalent-Cations”, J. Colloid Interface Sci., 136, 447-454(1990)
(72) J. R. Coorssen and R. P. Rand, “Structural Effects of Neutral Lipids on Divalent Cation-Induced Interactions of Phosphatidylserine-Containing Bilayers”, Biophys. J., 68, 1009-1018(1995)
(73) S. W. Murray and R. G. Beverley, “Effects of Neutral and Anionic Lipids on Digalactosyldiacylglycerol Vesicle Aggregation”, Biochim. Biophys. Acta., 1030, 231-237(1990)
(74) T. Inoue, H. Minami, R. Shimozawa and G. Sugihara, “Stability of Dlpa/Dlpc Mixed Vesicles Against Divalent Cation-Induced Aggregation - Importance of the Hydration Force”, J. Colloid Interface Sci., 152, 493-506(1992)
(75) L. J. Lis, W. T. Lis, V. A. Parsegian and R. P. Rand, “Adsorption of Divalent Cations to a Variety of Phosphatidylcholine Bilayers”, American Chemical Society (1981)
(76) T. Yoshimura and K. Aki, “Sodium-Induced Aggregation of Phosphatidic Acid and Mixed Phospholipid Vesicles”, Biochimica et Biophysica, 813, 167-173(1985)
(77) E. P. Day, A. Y. Kwok, S. K. Hark, J. T. Ho, W. J. Vail, J. Bentz and S. Nir, “Reversibility of Sodium-Induced Aggregation of Sonicated Phosphatidylserine Vesicles”, Proc. Natl. Acad. Sci. U.S.A., 77, 4026-4029(1980)
(78) S. Nir, J. Wilschut and J. Bentz, “The Rate of Fusion Phospholipid Vesiciles and the Role of Bilayer Curvature”, Biochim. Biophys. Acta., 688, 275-278(1982)
(79) J. R. Coorssen and R. P. Rand, “Structural Effects of Neutral Lipids on Divalent Cation-Induced Interactions of Phosphatidylserine-Containing Bilayers”, Biophys. J., 68, 1009-1018(1995)
(80) V. A. Parsegian and R. P. Rand, “Membrane Interaction and Deformation”, Ann. N. Y. Acad Sci., 461, 1-12(1983)
(81) D. Papahadjopoulos, W. J. Vail, K. Jacobson and G. Poste, “Cochleate Lipid Cylinders: Formation by Fusion of Unilamellar Lipid Vesicles ” Biochim. Biophys. Acta., 394, 483-491(1975)
(82) S. Nir and J. Bentz, “On The Forces Between Phospholipid
Bilayers ” J. Colloid Interface Sci., 65, 399-410 (1978)
(83) F. J. Carrion, A. D. L. Maza and J. L. Parra, “The Influence of Ionic Strength and Lipid Bilayer Charge on the Stability of Liposomes”, J. Colloid Interface Sci., 164, 78-87(1994)
(84) S. Chiruvolu, J. N. Israelachvili, E. Naranjo, Z. Xu and K. L. Herrington, “Measurement of Forces between Spontaneous Vesicle-Forming Bilayers”, Langmuir, 11, 4256-4266(1955)
(85) J. Marra, “Direct Measurement of the Interaction between Phosphatidylglycerol Bilayers in Aqueous Electrolyte Solutions”, Biophys. J., 50, 851-825(1986)
(86) S. A. Simon, T. j. Mcintosh and A. D. Magid, “Magnitude and Range of the Hydration Pressure between Lecithin Bilayers as a Function of Headgroup Density”, J. Colloid Interface Sci., 126, 74-83(1988)
(87) J. Marra and J. Israelachvili, “Direct Measurement of Force between Phosphatidylcholine and Phosphatidylglycerol Bilayers in Aqueous Electrolyte Solutions”, Biochemistry, 24, 4608-4618(1985)
(88) A. Yoshida, K. Hashizaki, H. Yamauchi, H. Sakai, S. Yokoyama and M. Abe, “Effect of Lipid with Covalently Attached Poly(ethylene glycol) on the Surface Properties of Liposomes Bilayer Membranes”, Langmuir, 15, 2333-2337(1999)
(89) D. J. Shaw, Colloid and Surface Chemistry,Reed Educational and Professional Publishing Ltd 4th (1992)
(90) H. Ohshima, T. W. Hearly and L. R. While, “Accurate Analytic Expressions for the Surface-Charge Density Surface-Potential Relationship and Double-Layer Potential Distribution for a Spherical Colloidal Particle”, J. Colloid Interface Sci., 90, 17-26(1982)
(91) J. Israelachvilli and H. Wennerstrom, “Role of Hydration and Water Structure in Biological and Colloidal Interactions”, Nature, 379, 219-225(1996)
(92) S. Marcelja and N. Radic, “Repulsion of Interfaces Due to Boundary Water”, Chem. Phys. Lett., 42, 129-130
(93) E. Evans and D. Needham, “Physical Properties of Surfactant Bilayer Membranes: Thermal Transitions, Elasticity, Rigidity, Cohesion and Colloidal Interactions”, J. Phys. Chem., 91, 4219-4228(1987)
(94) D. M. LeNeveu, R. P. Rand and V. A. Parsegian, “Measurement of Forces between Lecithin Bilayers”, Nature, 259, 601-603(1976)
(95) J. M. Delgado-Calvo-Flores, J. M. Peula-Garcia, R. Martinez-Garcia and J. Callejas-Fernandez, “Experimental Evidence of Hydration Forces between Polymer Colloids Obtained by Photon Correlation Spectroscopy Measurements”, J. Colloid Interface Sci., 189, 58-65(1997)
(96) J. Marra and J. Israelachvili, “Direct Measurements of Forces Between Phosphatidylcholine and Phosphatidylethanolamine Bilayers in Aqueous-Electrolyte Solutions”, Biochemistry, 24, 4608-4618(1985)
(97) S. Leikin, V. A. Parsegian and D. C. Rau, “Hydration Forces”, Annu. Rev. Phys. Chem., 44, 369-95(1993)
(98) R. P. Rand and V. A. Parsegian, “Hydration Forces between Phospholipid Bilayers”, Biochim. Biophys. Acta., 988, 351-376(1989)
(99) L. Perera, U. Essmann and M. L. Berkowitz, “Role of Water in the Hydration Force Acting between Lipid Bilayers”, Langmuir, 12, 2625-2629(1996)
(100) T. J. McIntosh, S. A. Simon, “Area per Molecule and Distribution of Water in Fully Hydrated Dilauroylphosphatidylethanolamine Bilayers”, Biochemistry, 25, 4948-4952(1986)
(101) J. Marra, “Direct Measurement of the Interaction Between Phosphatidylglycerol Bilayers in Aqueous-Electrolyte Solutions”, Biophys. J., 50, 815-825(1986)
(102) D. Marsh, “Water-Adsorption Isotherms and Hydration Forces for Lysolipids and Diacyl Phospholipids”, Biophys. J., 55, 1093-1110(1989)
(103) T. L. Kuhl, D. E. Leckband, D. D. Lasic and J. N. Israelachvili, “Modulation of Interaction Forces Between Bilayers Exposing Short-Chained Ethylene Oxide Headgroups”, Bioohys. J., 66, 1479-1488(1994)
(104) J. W. Virden and J. C. Berg, “The Steric stabilization of small Unilamellar Vesicles”, J. Colloid. Interface Science, 153, 15-22 (1992)
(105) W. Harbich and W. Helfrich, “The Swelling of Egg Lecithin in Water”, Chem. Phys. Lipids, 36, 39-63(1984)
(106) H. Hauser, I. Pascher, R. H. Pearson and S. Sundell, “Preferred Conformation and Molecular Packing of Phosphatidylethanolamine and Phosphatidylcholine”, Biochim. Biophys. Acta., 650, 21-51(1981)
(107) E. A. Evans and V. A. Parsegian, “Thermal-Mechanical Fluctuations Enhance Repulsion Between Biomolecular Layers”, Proceedings of National Actaemy of Science of the United States of America , 83, 7132-7136(1986)
(108) G. A. Jamieson and D. M. Robinson, Mammalian Cell Membranes, 2, Butterworth, London (1977)
(109) J. Marra and J. Israelachvili, “Direct Measurements of Forces between Phosphatidylcholine and Phosphatidylethanolamine Bilayers in Aqueous Electrolyte Solutions”, Biochemistry, 24, 4608-4618(1985)
(110) T. J. McIntosh, A. D. Magid and S. A. Simon, “Cholesterol Modifies the Shrot-Range Repulsive Interactions between Phosphatidylcholine Membranes”, Biochemistry, 28, 18-25(1989)
(111) R. P. Rand, V. A. Parsegian, J. A. C. Henry, L. J. Lis and M. McAlister, “The Effect of Cholesterol on Measured Interaction and Compressibility od Dipalmitoylphosphatidylcholine Bilayers”, Can. J. Biochem., 58, 959-968(1980)
(112) J.W.Virden, and J.C Berg, “NaCl-induced aggregation of dipalmitoylphosphatidylcholine small unilamellar vesic- les with varying amounts of incorporated cholesterol”, Langmuir 8 1532 (1992)
(113) G. Braun, P. I. Lelkers and S. Nir, “Effect of Cholesterol on Ca2+-Induced Aggregation and Fusion of Sonicated Phosphati- dylserine/Cholesterol Vesicles”, Biochim. Biophys. Acta., 688-694(1985)
(114) K. K. Eklund, J. E. Takkunen and P. K. J. Kinnunen, “Cation-Induced Aggregation of Acidic Phospholipid-Vesicles - The Role of Fatty-Acid Unsaturation and Cholesterol”, Chem. Phys. Lipids., 57, 59-66(1991)
(115) N. S. Kumar and C. P. Sharma, “Modification of Liposomes: Stability and Release Kinetics”, Biomaterial-Living System Interaction, 4, 183-188(1993)
(116) T. M. Allen and A. Chonn, “Large Unilamellar Liposomes with Low Uptake into the Reticuloendothelial System”, FEBS Letters., 223, 42-46(1987)
(117) M. C. Woodle and D. D. Lasic, “Sterically Stabilized Liposomes”,Biochim. Biophys. Acta., 1113, 171-193(1992)
(118) M. C. Woodle, M. S. Newman and J. A. Cohen, “Sterically Stabilized Liposomes: Physical and Biological Properties”, J. Drug. Target., 2, 397-403(1994)
(119) M. C. Woodle, L. R. Collins, E. Sponsler, N. Kossovsky, D. Papahadjopoulos and F. J. Martin, “Sterically Stabilized Liposomes: Reduction in Electrophoretic Mobility but Not Electrostatic Surface Potential”, Biophys. J., 61, 902-910(1992)
(120) A. Yoshida, K. Hashizaki, H. Yamauchi, H. Sakai, S. Yokoyama and M. Abe, “Effect of Lipid with Covalently Attached Poly(ethylene glycol) on the Surface Properties of Liposomes Bilayer Membranes”, Langmuir, 15, 2333-2337(1999)
(121) O. Tirosh, Y. Barenholz, J. Katzhendler and A. Priev, “Hydration of Polyethylene Glycol-Grafted Liposomes”, Biophys. J., 74, 1371-1379(1998)
(122) A. K. Kenworthy, S. A. Simon and T. J. McIntosh, “Structure and Phase Behavior of Lipid Suspensions Containing Phospholipids with Cocalently attached Polyethylene Glycol”, Biophys. J., 68, 1903-1920(1995)
(123) T. L. Kuhl, D. E. Leckband, D. D. Lasic and J. N. Israelachvili, “Modulation of Interaction Forces between Bilayers Exposing Short-Chained Ethylene Oxide Headgroups”, Biophys. J., 66, 1479-1488(1994)
(124) D. D. Lasic and F. Martin, Stealth Liposomes., CRC Press, Boca Raton, 289(1995)
(125) S. A. Simon, T. J. Mcintosh and A. D. Magid, “Magnitud and Range of the Hydration Pressure between Lecithin Bilayers as a Function of Headgroup Density”, J. Colloid Interface Sci., 126, 74-83(1988)
(126) D. Needham, T. J. McIntosh and D. D. Lasic, “Repulsive Interactions and Mechanical Stability of Polymer-Grafted Lipid Membranes”, Biochim. Biophys. Acta., 1108, 40-48(1992)
(127) J. W. Holland, C. Hui, P. R. Cullis and T. D. Madden, “Poly(ethylene Glycol Conjugates Regulate yhe Calcium-Induced Fusion of Liposomes Composed of Phosphatidylethanolamine and Phosphatidylserine”, Biochemistry, 35, 2618-2624(1996)
(128) Y. Guo and S. K. Hui, “Polyethylene Glycol-Conjugated Surfactants Promote or Inhibit Aggregation of Phospholipids”, Biochim. Biophys. Acta., 1323, 185-194(1997)
(129) L. J. Lis, M. McAlister, N. Fuller and R. P. Rand, “Interactions between Neutral Phospholipid Bilayer Membranes”, Biophys. J., 37, 657-666(1982)
(130) A. McLaughlin, W. K. Eng, G. Vaio, Tazewell Wilson and S. McLaughlin, “Dimethonium, A Divalent Cation that Exerts Only a Screening Effect on the Electrostatic Potential”, J. Membrane Biol., 76, 183-193(1983)
(131) W. Bruns, “The Second Osmotic Virial Coefficient of Polymer Solutions”, Marcomolecules, 29, 2641-2643(1996)
(132) G. J. M. Koper, W. F. C. Sager, J. Smeets and D. Bedeaux, “Aggregation in Oil-Continuous Water/Sodium Bis(2-ethylhexyl sulfosuccinate/Oil Microemulsions”, J. Phys. Chem., 99, 13291-13300(1995)
(133) M. L. Kurnaz and J. V. Maher, “Interaction of Dilute Colloidal Particles in a Mixed Solvent”, Phys. Rev., 51, 5916-5920(1995)
(134) S. Brunettl, D. Roux, A. M. Bellocq G. Fourche and Bothorel, “Micellar Interaction in Water-in-Oil Microemulsions. 2. Light Scattering Determination of the Second Virial Coefficient”, J. Phys. Chem., 87, 1028-1034(1983)
(135) W. Y. Chen, C. S. Kuo and D. Z. Liu, “Determination of the Second Virial Coefficient of the Interaction between Microemulsion Droplets by Microcalorimetry”, Langmuir, 16, 300-302(2000)
(136) W. Y. Chen, C. S. Kuo and D. Z. Liu, “A Novel Method of Determining the Aggregation Behavior of Microemulsion Droplets”, Bioseparation Engineering, 137-141(2000)
(137) M. L. Kurnaz and J. V. Maher, “Measurement of the Virial Coefficient for the Interaction of Dilute Colloidal Particles in a Mixed Solvent”, Phys. Rev., 55, 572-5576(1997)
(138) M. Takayama, S. Itoh, T. Nagasaki and I. Tanimizu, “A New Enzymatic Method for Determination of Serum Choline-Containing Phospholipids”, Clin. Chim. Acta, 79, 93-98(1977)
(139) K. K. Gunter, T. E. Gunter, A. Jarkowski and R. N. Rosier, “A Method of Resuspending Small Vesicles Separated from Suspension by Protamine Aggregation and Centrifugation”, Anal. Biochem., 120, 113-124(1982)
(140) F. T. Presti, R. J. Pace and S. I. Chan, “Cholesterol-Phospholipid Interaction in Membranes. 2. Stoichiometry and Molecular Packing of Cholesterol-Rich Domains” Biochemistry, 21, 3831-3835(1982)
(141) G. C. Newman and C. H. Hung, “ Structural Studies on Phosphatidylcholine — Cholesterol Mixed Vesicles” Biochemistry, 14, 3363-3369 (1975)
(142) P. L. Yeagle, “Cholesterol and the Cell Membrane”, Biochim. Biophys. Acta., 822, 267-287(1985)
(143) Israelachvili, J.N., Intermolecular and surface forces, Chap. 8. Academic Press, New York, (1992).
(144) Brian. L. and Abraham M.Lenhoff, “Excluded volume contribution to the osmotic second virial coefficient for proteins”, Aiche J., 41, 1010-1014(1995)
(145) X. Armengol and J. Eastelrich, “Physical Stability of Different Liposome Compositions Obtained by Extrusion Method”, J. Microencapsulation. 12, 525-533(1995)
(146) M. C. Woodle, M. S. Newman, J. A. Cohen, “ Sterically Stabilized Liposomes: Physical and Biological Properties” J. Drug. Target., 2, 397-403(1994)
(147) M. Kasbauer, D. D. Lasic, M. Winterhalter, “Polymer Induced fusion and Leakage of Small Unilamellar Phospholipid Vesicles: Effect of Surface Grafted Polyethylene-Glycol in the Presence of Free PEG” Chem. Phys. Lipids., 86, 153-159 (1997)
指導教授 陳文逸(Wen-yih Chen) 審核日期 2000-8-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明