博碩士論文 85341006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:26 、訪客IP:3.144.16.254
姓名 吳紹榮(Shao-Jung Wu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 環氧樹脂/聚氧化二甲苯摻合體反應性、相行為及機械性質之研究
(Study on the Reactivity, Phase Behavior and Mechanical Property of Epoxy/Polyphenylene Oxide Blend)
相關論文
★ 幾丁聚醣摻合PU基材之物性及抑菌研究★ 幾丁聚醣/硫酸軟骨素製成多孔性複合膜之物化性質探討與研究
★ 聚多醣體於組織工程材料應用之研究★ PDMS在NMRI顯影劑上之應用(I)流變性質之探討
★ 幾丁聚醣於薄膜製程發展及物性之研究★ 氰酸酯/聚氧化二甲苯摻合體反應性及相行為研究
★ 聚二甲基矽氧高分子膠體溶液之研究:NMR顯影劑、NMR訊號及流變性質等探討★ 聚乳酸(PLA)及乳酸/羥基乙酸共聚合物(PLGA) 於抗癌藥物傳輸系統之研究
★ 以電漿處理聚四乙烯表面改質之研究★ 幾丁聚醣與海藻膠複合被覆薄膜之相關物性與細胞貼覆
★ 不同分子量之幾丁聚醣與纖維素摻合於薄膜製程及物性之研究★ 幾丁質摻合聚乳酸酯微粒於藥物釋放系統之研究
★ 多面體寡體矽石/甲基丙烯酸脂系之奈米結構 混成材料之研究★ 酪胺酸酵素改質幾丁聚醣在化工廢水處理程序上之應用
★ 以酪胺酸酵素修飾幾丁聚醣 應用於化工程序之研究★ 幾丁聚醣接枝半乳糖簇之材料性質及其肝靶向性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究第一部分是以熱熔融法摻合聚氧化二甲苯 (PPO) 於氰酸酯硬化之環氧樹脂中來探討摻合體熱性質、機械性質與相行為。由DSC實驗得知,摻合體的反應起始溫度隨著PPO的含量增加而降低,且反應之總放熱量卻隨著PPO增加而下降。環氧樹脂/PPO系統之硬化遵守著自動催化反應動力模式,但是在此混合系統中之硬化反應速率高於純環氧樹脂系統。環氧樹脂/PPO系統中有較高的反應速率原因是由於聚氧化二甲苯的末端OH基會催化環氧樹脂與氰酸酯的硬化反應。FTIR與NMR分析顯示特性官能基(如環氧基、氰酸酯基)的反應隨PPO增加而加速並且有coreaction 產生,例如cyanate-hydroxyl addition (imidocarbonate, carbamate),epoxy-cyanate addition (oxazolidinone)等。由SEM與DMA發現摻合體相型態與聚氧化二甲苯的含量有關。當PPO含量低時,相分離是經由nucleation and growth (NG) 進行。PPO含量高時,相分離是經由spinodal相分離模式。當PPO含量大於20 phr時,系統的相反轉開使產生。當PPO含量到達50 phr時,形成PPO為基材連續相,環氧樹脂為分散相。摻合體的抗張強度及模數僅有些許變化,但是韌性卻大幅提升,由其是在系統開使相反轉現象時特別明顯,原因是PPO的延展性及塑性形變造成的。環氧樹脂的介電常數也隨PPO的增加而下降。此外添加反應性單體三丙烯基三聚氰酸鹽 (Triallylisocyanurate, TAIC) 可改善摻合體的相容性和抗溶劑性。
第二部分是以分散法摻合Dicyandiamide (DICY) 硬化之環氧樹脂和PPO,來探討其韌性、熱性質、動態黏彈、介電常數和相形態等。由分析中得知摻合PPO提升了摻合體的韌性與絕緣性質,而且抗張強度及模數並未因PPO之摻合而改變;PPO添加量低的摻合體中,PPO粒子有聚集發生;不過在PPO添加量高的摻合體中,粒子間皆有互相連結情形發生,形成PPO與環氧樹脂的共連續相。由動態機械分析 (DMA) 得知摻合體會隨著PPO添加量的增加,其兩相 (環氧樹脂相和PPO相) 的玻璃轉化溫度有向內轉移的現象,產生此現象的原因可能是摻合體在混合及硬化過程中,環氧樹脂比起硬化劑dicy更容易溶於PPO相,結果是較多的環氧樹脂、較少的dicy溶於PPO相,導致PPO相的塑化作用。PPO相的Tg大幅下降可證實這個觀點,同時dicy濃度在兩相中分配不均勻,使得環氧樹脂相的dicy濃度較高,造成環氧樹脂相的Tg點提升。此外,我們添加三丙基烯基三聚氰酸鹽 (TAIC) 於摻合體中,可改善摻合體之相容性及抗溶劑性。在破裂能量方面,隨著TAIC含量的增加而提升。在絕緣電性方面,隨著TAIC含量增加,其介電常數明顯下降。在TGA分析中,在最大裂解速率溫度隨著TAIC含量增加而提高。
第三部分是環氧樹脂/PPO摻合體與高功能克維拉纖維製成複合材料,其相分離的模式不同於純摻合體樹脂。當有纖維存在時,相分離過程中環氧樹脂會往極性的纖維表面移動,形成epoxy-coated fiber的相形態,所以microbond的界面性質並不會因PPO的存在而下降。在複合材料積層板中,環氧樹脂會大量聚集在富纖維區域,形成epoxy-coated fiber分佈於PPO相中,此種相形態對於複合材料的破壞韌性、機械性質有正面的影響。
摘要(英) Cure behavior, miscibility and phase separation have been studied in blends of polyphenylene oxide (PPO) with diglycidyl ether of bisphenol A (DGEBA) resin and cyanate ester hardener. An autocatalytic mechanism is observed for the epoxy/PPO blends and the neat epoxy. It is also found that the epoxy/PPO blends react faster than the neat epoxy. The effects of PPO content on the cure behavior in the cyanate ester cured epoxy were investigated with FTIR. FTIR analysis reveals that the cyanate functional group reactions are accelerated by adding PPO and indicates that several coreactions have occurred, such as cyanate-hydroxyl addition and epoxy-cyanate addition. This is caused by the reaction of cyanate ester with PPO phenolic end-group and water yielding imidocarbonate and carbamate intermediate which can react with cyanate ester to form cyanurate. Then the cyanurate can further react with epoxy resin. During cure, the epoxy resin is polymerized and the reaction-induced phase separation is accompanied by phase inversion upon the concentration of PPO greater than 50 phr. At low PPO content, the phase separation takes place via nucleation and growth (NG). At high PPO content, the phase separation takes place via spinodal decomposition (SD). The dynamic mechanical measurements indicate that the two-phase character and partial mixing existed in all the mixtures. The fracture toughness (GIC) and thermal mechanical property are improved by PPO content. However, the two-phase particulate morphology is not uniform especially at a low PPO content. In order to improve the uniformity and miscibility, triallylisocyanurate (TAIC) is evaluated as an in situ compatibilizer for epoxy/PPO blends. TAIC is miscible in epoxy and the PPO chains are bound to TAIC network. SEM observations show that adding TAIC improve the miscibility and solvent resistance of the epoxy/PPO blends.
A series of blends has been prepared by adding a polyphenylene oxide, in varying proportions, to an epoxy resin cured with dicyandiamide. All the materials show two-phase morphology when characterized by SEM and DMA. The SEM and DMA indicate that partial mixing exists in all the blends especially in high PPO content. It implies that the epoxy oligomer or low crosslinking density epoxy exists in PPO phase after curing. The tensile strength and modulus of these blends are nearly independent of PPO content. While the fracture toughness (GIC) is improved by PPO content. Furthermore, the dielectric constant decreases with increasing PPO content in a linear fashion. However, two-phase particulate morphology is not uniform. In order to improve the uniformity and miscibility, triallylisocyanurate (TAIC) has been used as an in situ compatibilizer for the polymer blends of epoxy and PPO. SEM and DMA reveal the improvement of miscibility and solvent resistant in this system. The fracture toughness and dielectric constant of these TAIC-modified systems are also improved by adding TAIC (0-20 phr).
The morphology of the fiber-rich areas in the composite is different from that of the epoxy/PPO blend without Kevlar fiber. In the pure polymer blends for high PPO content (30 and 50 phr), phase separation and phase inversion are observed. In the composites, the majority of the epoxy resin migrates to the polar fiber surface resulting in the epoxy-coated fibers. So the interfacial shear strength (IFSS) between Kevlar fiber and epoxy/PPO blends is almost the same as that between Kevlar fiber and neat epoxy. The presence of PPO does not affect the interfacial property in the epoxy/PPO/fiber composite. So the interlaminar shear strength (ILSS) increase with the PPO content is due to an increase in the composite’’s ductility or toughness.
關鍵字(中) ★ 反應動力
★ 相分離
★ 摻合
★ 聚氧化二甲苯
★ 環氧樹脂
★ 複合材料
關鍵字(英) ★ reaction kinetic
★ phase separation
★ blend
★ polyphenylene oxide
★ epoxy
★ composite
論文目次 中文摘要………………………………………………………………….I
英文摘要………………………………………………………………..III
圖表索引………………………………………………………………..IX
第一章 緒論……………………………………………………………1
第二章 文獻回顧………………………………………………………4
2-1 環氧樹脂的配方組成……………………………………………….4
2-2 環氧樹脂的增韌改質劑…………………………………………….5
2-3 增韌機構…………………………………………………………….8
2-4 兩相形態的形成…………………………………………………….9
2-4-1 反應誘導相分離………………………………………………….9
2-4-2 分散第二相於熱固性高分子的單體中…………………………11
2-5 反應誘導相分離與分散法的比較………………………………...16
2-6 相分離過程的熱力學描述………………………………………...16
2-6-1 摻合體的相容性………………………………………………...17
2-6-2 Binodal Curve…………………………………………………….17
2-6-3 Spinodal Curve…………………………………………………...18
2-6-4 Critical Point……………………………………………………...18
2-7 硬化反應動力學…………………………………………………...18
2-7-1 微差掃瞄熱卡計………………………………………………...19
2-7-2 霍氏轉換紅外光譜儀…………………………………………...21
2-8 環氧樹脂硬化的凝膠效應………………………………………...21
2-9 聚醯胺纖維與複合材料…………………………………………...23
第三章 氰酸酯硬化之環氧樹脂與聚氧化二甲苯摻合體性質之研究……………………………………………………………..30
3-1 前言………………………………………………………………...30
3-2 實驗………………………………………………………………...31
3-2-1 材料與藥品……………………………………………………...31
3-2-2 儀器設備………………………………………………………...32
3-2-3 樣品製備………………………………………………………...33
3-2-4 實驗步驟………………………………………………………...34
3-3 結果與討論………………………………………………………...37
3-3-1 氰酸酯硬化動力學……………………………………………...37
3-3-2 氰酸酯硬化環氧樹脂/聚氧化二甲苯摻合體反應性分析……..38
3-3-3 摻合體反應過程之FTIR分析………………………………….64
3-3-4 摻合體硬化過程相分離行為及摻合體硬化過後的相形態之探討………………………………………………………………....83
3-3-5 摻合體的動態機械分析………………………………………...96
3-3-6 摻合體的機械性質及介電性質之探討………………………...99
3-3-7 摻合體熱性質分析…………………………………………….103
3-4 結論……………………………………………………………….107
第四章 PPO填充粒子對環氧樹脂熱性質與機械性質之研究…….111
4-1 前言……………………………………………………………….111
4-2 實驗……………………………………………………………….111
4-2-1 材料與藥品……………………………………………………..111
4-2-2 儀器設備………………………………………………………..112
4-2-3 樣品製備………………………………………………………..112
4-2-4 實驗步驟………………………………………………………..113
4-3 結果與討論……………………………………………………….114
4-3-1 Dicy硬化環氧樹脂/PPO摻合體加工條件之訂定…………….114
4-3-2 環氧樹脂與PPO摻合體相形態之探討……………………….115
4-3-3 TAIC改質環氧樹脂與PPO摻合體相形態之探討……………118
4-3-4 環氧樹脂與PPO摻合體機械性質之探討…………………….118
4-3-5 環氧樹脂與PPO摻合體動態機械性質之探討……………….120
4-3-6 環氧樹脂與PPO摻合體熱穩定性之探討…………………….131
4-3-7 環氧樹脂與PPO摻合體介電性質之探討…………………….134
4-4 結論……………………………………………………………….139
第五章 氰酸酯硬化環氧樹脂/聚氧化二甲苯摻合體為基材之克維拉纖維複合材料性質之研究…………………………………141
5-1 前言……………………………………………………………….141
5-2 實驗……………………………………………………………….143
5-2-1 材料與藥品…………………………………………………….143
5-2-2 儀器與設備…………………………………………………….143
5-2-3 纖維的前處理………………………………………………….144
5-2-4 纖維表面形態的觀察………………………………………….144
5-2-5 Microbond試件製作及測量……………………………………144
5-2-6 Kevlar纖維/環氧樹脂複合材料試片之製作程序及測試……..145
5-2-7 SEM試件之製備與觀察………………………………………..146
5-3 結果與討論……………………………………………………….148
5-3-1 以微粒拉出法研究PPO對Kevlar纖維/環氧樹脂界面性質的影響………………………………………………………………..148
5-3-2 複合材料的破壞面…………………………………………….152
5-3-3 複合材料機械性質之探討…………………………………….159
5-3-4 複合材料熱性質測試………………………………………….163
5-3-5 Kevlar纖維表面處理對於複合材料機械性質的影響………...168
5-4 結論……………………………………………………………….168
第六章 總結…………………………………………………………169
參考文獻………………………………………………………………172
簡歷……………………………………………………………………178
參考文獻 1. Y. Ishii, T. Arai, S. Kinoshita and T. Katayose, PCWC VII, Basel 96, I-3-1 (1996).
2. M. F. Grenier-Loustalot, C. Lartigau and P. Grenier, Europ. Polym. J. 31, 1139 (1995).
3. D. A. Shimp, F. A. Hudock and S. J. Ising, Int. SAMPE symp. Exhib. 33, 754; Ch. Abs. 110, 96323 (1988).
4. F. J. McGarry and A. M. Willner, Org. Coat Plast. Chem. (ACS) 28, 512 (1968).
5. C. B. Bucknall and I. K. Partridge, Polym. Eng. Sci. 26, 54 (1986).
6. J. L. Hedrick, I. Yilgor, G. L. Wilkes and J. E. McGrath, Polym. Bull. 13, 201 (1985).
7. J. A. Cecere and J. E. McGrath, Polym. Prepr. 27, 299 (1986).
8. C. B. Bucknall, C. M. Gomez and I. Quintard, Polymer 35, 353 (1994).
9. C. B. Bucknall and A. H. Gilbert, Polymer 30, 213 (1989).
10. D. J. Hourston and J. M. Lane, Polymer 33, 1379 (1992).
11. M. C. Chen, D. J. Hourston and W. B. Sun, Europ. Polym. J. 28, 1471 (1992).
12. T. Ohsako, K. Nagura and I. Nozue, Polymer 34, 5080 (1993).
13. E. M. Woo, L. D. Bravence and J. C. Seferis, Polym. Eng. Sci. 34, 1664 (1994).
14. R. A. Pearson and A. F. Yee, Polymer 34, 3658 (1993).
15. R. A. Pearson and A. F. Yee, J. Appl. Polym. Sci. 48, 1051 (1993).
16. R. W. Venderbosch, H. E. H. Meijer and P. J. Lemstra, Polymer 35, 4349 (1994).
17. R. W. Venderbosch, H. E. H. Meijer and P. J. Lemstra, Polymer 36, 1167 (1995).
18. R. W. Venderbosch, H. E. H. Meijer and P. J. Lemstra, Polymer 36, 2903 (1995).
19. 張國輝, 聚苯醚-環氧樹脂摻合物芳香族胺類固化系統之研究, 國立交通大學應用化學研究所碩士論文 (1998).
20. Z. Fu and Y. Sun, Polym. Prepr. 29, 177 (1988).
21. Z. B. Ahmad, M. F. Ashby and P. W. R. Beaumont, Scr. Metall. Mater. 20, 843 (1986).
22. K. T. Farber and A. G. Evans, Acta Mettal. 31, 565 (1983).
23. J. Kim and R. Robertson, Polym. Mater. Sci. Eng. (ACS) 63, 301 (1990).
24. H. J. Sue, R. A. Pearson and A. F. Yee, Polym. Eng. Sci. 31, 793 (1991).
25. C. B. Bucknall, In: Toughened Plastics, Applied Science, Barking Essex. (1997).
26. J. N. Sultan, R. C. Laible and F. J. McGarry, J. Appl. Polym. Sci. 6, 127 (1971).
27. B. S. Kim, T. Chiba and T. Inoue, Polymer 34, 2809 (1993).
28. J. P. Pascault, J. Galy and F. Mechin, In: I. Hamerton (ed), Chemistry and Technology of Cyanate Ester Resins, Chapman & Hall, London, 112 (1994).
29. R. J. J. Williams, J. Borrajo, H. E. Adabbo and A. J. Rojas, In: C. K. Riew and J. K. Gillham (eds), Rubber-Modified Thermoset Resins, Adv. Chem. Ser. 208 Washington DC; Am. Chem. Soc., 195 (1984).
30. A. Vazquez, A. J. Rojas, H. E. Adabbo, J. Borrajo and R. J. J. Williams, Polymer 28, 1156 (1987).
31. S. Viscont and R. H. Marchessault, Macromolecules 7, 913 (1974).
32. T. T. Wang and H. M. Zupko, J. Appl. Polym. Sci. 26, 2391 (1981).
33. L. C. Chan, J. K. Gillham, A. J. Kinloch and S. J. Shaw, In: C. K. Riew and J. K. Gillham (eds), Rubber-Modified Thermoset Resins, Adv. Chem. Ser. 208 Washington DC; Am. Chem. Soc., 235 (1984).
34. A. C. Grillet, J. Galy and J. P. Pascault, Polymer 33, 34 (1992).
35. D. Chen, J. P. Pascault, H. Sautereau and G. Vigier, Polym. Int. 32, 369 (1993).
36. C. G. Delides, D. Hayward, R. A. Pethrick and A. S. Vatalis, J. Appl. Polym. Sci. 47, 2037 (1993).
37. D. K. Hoffman and C. B. Arends, US Patent 4, 708, 996 (1987).
38. D. K. Hoffman, C. Ortiz, D. L. Hunston and W. McDonough, Polym. Mat. Sci. Eng. (ACS) 70, 7 (1994).
39. C. Ortiz, W. McDonough, D. L. Hunston and D. K. Hoffman, Polym. Mat. Sci. Eng. (ACS) 70, 9 (1994).
40. H. J. Sue, E. I. Garcia-Meitin, D. M. Pickelman and P. C. Yang, In: Toughened Plastics 1: Science and Engineering, Adv. Chem. Ser. 233 Washington DC; Am. Chem. Soc., 259 (1993).
41. C. K. Riew, A. R. Siebert, R. W. Smith, M. Fernando and A. J. Kinloch, Polym. Mat. Sci. Eng. (ACS) 70, 5 (1994).
42. J. Y. Qian, R. A. Pearson, V. L. Dimonie and M. S. El-Aasser, Polym. Mat. Sci. Eng. (ACS) 70, 17 (1994).
43. A. Maaazouz, H. Sauteereau and J. F. Gerard, Polym. Bull. 33, 67 (1994).
44. G. Levita, A. Marchetti and A. Lazzeri, Makromol. Chem., Macromol. Symp. 41, 179 (1991).
45. R. Mulhaupt and U. Buchholz, Polym. Mat. Sci. Eng. (ACS) 70, 4 (1994).
46. M. Gordon, J. Goldsbrough, B. Ready and K. W. Derham, In: Industrial Polymers, Characterization by Molecular Weight, Transcripta Books, London, 45 (1973).
47. H. J. Borchardt and F. Daniels, J. Am. Chem. Soci. 79, 41 (1957).
48. Y. P. Khanna, R. Kumar and S. Das, Polym. Eng. Sci. 30, 1171 (1990).
49. H. Ng and I. Manas-Zloczower, Polym. Eng. Sci. 29, 1097 (1989).
50. L. J. Lee, Polym. Eng. Sci. 21, 483 (1981).
51. S. Sourour and M. R. Kamal, Thermochimica Acta. 14, 41 (1976).
52. N. A. St John, G. A. Georage, P. A. Cole-Clarke, M. E. Mackay and P. J. Halley, High Perform. Polym. 5, 21 (1993).
53. Y. S. Yang and L. J. Lee, SPE ANTEC Tech. Papers 32, 419 (1986).
54. S. L. Simon and J. K. Gillham, J. Appl. Polym. Sci. 47, 461 (1993).
55. G. Wisanrakkit and J. K. Gillham, J. Coat. Technol. 62, 35 (1990).
56. M. T. Aronhime and J. K. Gillham, Adv. Polym. Sci. 78, 84 (1986).
57. J. K. Gillham and J. B. Enns, J. Appl. Polym. Sci. 28, 2567 (1983).
58. J. W. S. Hearle and C. Y. Zhou, Textile Res. J. 57, 7 (1987).
59. J. Kalantra and L. T. Drzal, J. Mater. Sci. 25, 4186 (1990).
60. S. E. Keinath and R. J. Morgan, Thermochimica Acta 166, 17 (1990).
61. L. S. Penn and F. Larsen, J. Appl. Polym. Sci. 23, 59 (1979).
62. R. J. Morgan, C. O. Pruneda, and W. J. Steele, J. Polym. Sci.: Polym. Phys. Ed. 2, 1757 (1983).
63. L. S. Li, L. F. Allard, and W. C. Bigelow, J. Macromol. Sci. Phys. B22, 269 (1983).
64. M. G. Dobb, D. J. Johnson, and B. P. Saville, J. Polym. Sci.: Polym. Phys. Ed. 15, 2201 (1977).
65. M. Panar, D. Avakian, R. C. Blume and K. H. Gardner, J. Polym. Sci.: Polym. Phys. Ed. 21, 1955 (1983).
66. R. J. Young, D. Lu, R. J. Day, W. F. Knoff and H. A. Davis, J. Mater. Sci. 27, 5431 (1992).
67. S. J. Krause, D. L. Vezie and W. W. Adams, Polym. Commun. 30, 19 (1989).
68. M. G. Dobb and R. M. Robson, J. Mater. Sci. 25, 459 (1990).
69. H. Fujiwara, B. S. Kim and T. Inoue, Polym. Eng. Sci. 36, 1541 (1996).
70. S. Mostovoy, P. B. Crosley and E. J. Ripling, J. Mater. 2, 661 (1967).
71. J. Bauer, Thesis, B. Academy of Sciences of the GDR, Berlin (1990).
72. M. Bauer, J. Bauer and B. Garske, Acta Polym. 37, 604 (1986).
73. M. Bauer, J. Bauer and G. Kuhn, Acta Polym. 37, 604 (1986).
74. A. K. Bonezkaya, M. A. Kravtschenko, V. V. Korshak, Z. M. Frenkel, V. A. Pankratov and S. V. Vinogradova, Vysokomol. Soed. B17, 282 (1975).
75. A. K. Bonezkaya, M. A. Kravtschenko, Z. M. Frenkel, V. A. Pankratov, S. V. Vinogradova and V. V. Korshak, Vysokomol. Soed. A19, 1042 (1977).
76. A. K. Bonezkaya, V. V. Ivanov, M. A. Kravtschenko, V. A. Pankratov, Z. M. Frenkel, V. V. Korshak and S. V. Vinogradova, Vysokomol. Soed. A22, 766 (1980).
77. A. K. Bonezkaya, M. A. Kravtschenko, Z. M. Frenkel, V. A. Pankratov, V. V. Korshak and S. V. Vinogradova, Vysokomol. Soed. A23, 1494 (1981).
78. Z. M. Frenkel, V. V. Korshak, A. K. Bonezkaya, V. A. Pankratov, S. V. Vinogradova and M. A. Kravtschenko, J. Prakt. Chem. 318, 923 (1976).
79. O. Georjon, J. Galy and J. P. Pascault, J. Appl. Polym. Sci. 49, 1441 (1993).
80. A. M. Gupta and C. W. Macosko, Makromol. Chem. Macromol. Symp. 45, 105 (1991).
81. V. V. Korshak, A. K. Bonezkaya, M. A. Kravtschenko, Z. M. Frenkel, V. A. Pankratov and S. V. Vinogradova, Izv. Akad. Nauk SSSR, Ser. Chim. 1976, 923 (1976).
82. V. Micro, Z. Q. Cao, F. Mechin and J. P. Pascault, Proc. ACS, Div. Polym. Mat. Sci. Eng. 66, 451 (1992).
83. Y. P. Khanna, R. Kumar and S. Das, Polym. Eng. Sci. 30, 1171 (1990).
84. R. H. Lin, J. L. Hong and A. C. Su, Proc. ACS, Div. Polym. Mat. Sci. Eng. 66, 464 (1992).
85. S. V. Vinogradova, M. M. Pazuriya, V. A. Pankratov, V. V. Korshak, L. I. Makarova and K. A. Andrianov, Vysokomol. Soed. A19, 80 (1977).
86. M. R. Kamal, Polym. Eng. Sci. 14, 231 (1974).
87. S. L. Simon and J. K. Gillham, Proc. ACS, Div. Polym. Mat. Sci. Eng. 32, 182 (1991).
88. S. L. Simon and J. K. Gillham, Proc. ACS, Div. Polym. Mat. Sci. Eng. 66, 453 (1992).
89. E. Grigat and R. Putter, Angew. Chem. Internat. 6, 206 (1967).
90. D. A. Shimp, S. J. Ising and J. R. Christenson, Int. SAMPE symp. Exhib. 34, 222 (1989).
91. M. Bauer, W. Tanzer, H. Much and R. Ruhman, Acta Polym. 40, 335 (1989).
92. M. Bauer, J. Bauer, R. Ruhman and G. Kuhn, Acta Polym. 40, 397 (1989).
93. D. A. Shimp and J. E. Wentworth, SAMPE, Los Angeles, 293 (1992).
94. D. Verchere, H. Sautereau, J. P. Pascault, S. M. Moschiar, C. C. Riccardi and R. J. J. Williams, In: C. K. Riew and A. J. Kinloch (eds), In: Toughened Plastics 1: Science and Engineering, Adv. Chem. Ser. 233 Washington DC; Am. Chem. Soc., 335 (1993).
95. W. H. Jo and M. B. Ko, Macromolecules 27, 7815 (1994).
96. K. Yamanaka and T. Inoue, Polymer 30, 662 (1989).
97. K. Yamanaka, V. Takagi and T. Inoue, Polymer 30, 1839 (1989).
98. K. Yamanaka and T. Inoue, J. Mater. Sci. 25, 241 (1990).
99. H. S. Y. Hsich, J. Mater. Sci. 25, 1568 (1990).
100. H. S. Y. Hsich, Polym. Eng. Sci. 30, 493 (1990).
101. T. Inoue, Prog. Polym. Sci. 20, 119 (1995).
102. T. Miyamoto, K. Kodama and K. Shibayama, J. Polym. Sci. A2, 8, 2095 (1970).
103. R. Buchdahl and L. E. Nielsen, J. Appl. Phys. 21, 482 (1950).
104. L. E. Nielsen, Appl. Polym. Symp. 12, 249 (1969).
105. D. Hull, In: An Introduction to Composite Materials, Cambridge University Press, Ch. 1 (1981).
106. S. Kumar, In: Structure and Properties of High Performance Polymeric and Carbon Fiber, An Overview, SAMPE Quarterly, Jan., 3 (1986).
107. C. B. Bucknall and I. K. Partridge, Polymer 24, 639 (1983).
108. J. C. Hedrick, J. L. Hedriclc, J. A. Cecere, S.C. Liptak and J .E. McGrath, In: Proc. ACS Division of Polymeric Materials: Science and Engineering, ACS Books and Journal Division, Washington DC, 26-31, 190-194 (1990).
109. H. D. Stenzenberger, W. Romer, M. Herzog and P. Konig, In: Proc. 33rd Int. SAMPE Symp., ed. G. Carrillo, E. D. Newell, W. D. Brown and P. Phelan, SAMPE, Anaheim, CA, 1546 (1988).
110. B. Miller, P. Muri and L. Rebenfeld, Composites Sci. and Technol. 28, 17 (1987).
111. P. J. Merrera-Franco and L. T. Drzal, Composites 23, 2 (1992).
112. G. S. Sheu, T. K. Lin, S. S. Shyu and J.Y. Lai, J. Adhesion Sci. Technol. 8, 511 (1994).
113. J. P. Berry, J. Appl. Phys. 34, 62 (1963).
114. M. F. Grenier-Loustalot, C. Lartigau, F. Metras and P. Grenier, J. Polym. Sci.: Polym. Chem. 34, 2955 (1996).
115. D. J.-P. Turmel and I. K. Partridge, Composites Sci. Technol. 57, 1001 (1997).
116. J. R. Brown, P. J. C. Chappell and Z. Mathys, J. Mater. Sci. 26, 4172 (1991).
117. S. R. Wu, G. S. Shyu and S. S. Shyu, J. Appl. Polym. Sci. 62, 1347 (1996).
118. D. C. Leach and D. R. Moore, Composites Sci. Technol. 23, 131 (1985).
指導教授 徐新興(Shin-Shing Shyu) 審核日期 2000-6-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明