博碩士論文 85342002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:68 、訪客IP:3.226.245.48
姓名 陸立德(Li-teh Lu)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 延伸LQG設計法則於結構主動控制器設計
(Extended LQG Methodology for Active Structural Controller Design)
相關論文
★ 國際巨災保險制度之研究★ 我國推動地方層級災害防救專責單位之問題探討-以桃園縣為例
★ 公共危險物品保安監督之探討-以新竹縣為例★ 長期照顧機構消防安全設計與防火避難設施之研究
★ 考慮土壤結構互制效應並裝設減振裝置的高層建築氣動力反應之研究★ 結合模糊控制與類神經網路探討非線性結構控制的穩定性
★ 觀光產業天然災害風險評估與管理★ 天然災害風險管理決策方法建立—以地震災害為例
★ 颱洪災害風險評估推測事件資料庫之建置及應用★ 火災現場指揮幕僚運作探討-以桃園市政府消防局為例
★ 科學園區地震緊急應變計畫之研擬★ 橋梁混合式隔減震研究
★ 地震災害風險評估及地震保險之風險管理★ 高阻尼樓房結構耐震研究
★ 高架橋梁地震資料分析與耐震評估研究★ 園區建築物耐震能力評估
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文針對結構主動控制文獻中最常被利用到LQG最佳控制理論作延伸性的拓展與探討。本文將LQG最佳控制器的應用拓展至LQG/LTR強健控制器,和現有的文獻相比可以看出LQG/LTR強健控制器應用在結構主動控制上可以對系統提供較佳的穩定裕度。
近來,H2 和 H¥ 最佳控制理論被應用在結構主動控制上,文獻記載應用H2 和 H¥ 最佳控制理論可有效的減低結構在強風與地震下的反應。本文將闡述在適當選擇權重函數下,定義於時間域的LQG最佳控制器和定義於頻率域的H2 最佳控制器可以在數學上全等。除了將LQG最佳控制器的應用拓展至LQG/LTR強健控制器外,本論文所探討另一個重點是嘗試將H¥ 最佳控制的理論精神融入LQG或說是H2 最佳控制器的設計考慮中。此時吾人不再緊守著LQG、H2 和H¥ 最佳控制理論中成本函數必須最佳化的要求,而是在這些成本函數求取適當的妥協。從本文的結果可以知道,不同最佳化控制理論中成本函數間的妥協可以使控制器的設計更有彈性。傳統的LQG、H2 和H¥ 最佳控制器可以由兩項聯立的Riccati Equation求得,但是不同最佳化控制理論中成本函數間的妥協問題卻不能由簡單的聯立的Riccati Equation求得。近來,interior-point method的出現與應用使得LMIs(Linear Matrix Inequalities)成為一套有用的數學工具。本文中,利用單一的Lyapunov函數將不同最佳化控制理論成本函數間的妥協問題轉換成LMIs並實際求解出控制器。吾人將此控制器設計法則應用到ASCE Committee on Structural Control提出的受風力影響高樓結構主動控制標準問題上可以得到滿意的結果。
摘要(英) The LQG optimal control theory used extensively in the literatures for active structural control is extended in this dissertation. Since the LQG controller provides no guarantee for robust stability, we extend the LQG controller to the LQG/LTR controller. Simulations show that LQG/LTR controllers provide better stability margin than those presented in the published literatures.
Recently, H2 and H¥ optimal control techniques were introduced for active structural control problem, which results in effectual approaches in the design of controllers for seismic and wind excited buildings. Since LQG optimal control criteria defined in time domain can be numerically equivalent to the H2 optimal control criteria defined in frequency domain with appropriate selection of design weightings. In this dissertation, we present a control strategy that is the simultaneous treatment of both H2 and H¥ criteria and this control strategy quantitatively demonstrates design tradeoffs. Thus, we extend the popular LQG controller to the mixed LQG/H¥ or H2/H¥ controller. This mixed control problem can be formulated by linear matrix inequalities in terms of a common Lyapunov function. Solving linear matrix inequalities is a convex optimization problem. Simulation and design results demonstrates that decreasing H¥ attenuation constraint can be used to reduce the structural response under wind excitations at the expense of increasing H2 performance index and control efforts of the actuator.
關鍵字(中) ★ 結構主動控制
★ 最佳控制
關鍵字(英) ★ active structural control
★ optimal control law
★ h2 optimal control
★ hinf optimal control
★ mix h2 and hinf control law
★ LMIs
論文目次 Contents pages
1. Introduction1
1.1 Background and Motivations 1
1.2 Main Contributions5
1.3 Organization of This Dissertation6
2. Optimal Control Theory7
2.1 The Linear Quadratic Regulator8
2.2 The Kalman Filter9
2.3 LQG Optimal Controller: combined optimal state estimation and optimal
state feedback10
2.4 H2 optimal controller12
2.5 LQG: a special H2 optimal controller14
3. LQG/LTR Robust Controller for Active Structural Control16
3.1 Equations of Motion of Structural Systems16 3.2 Control Actions16
3.3 Collocated Velocity Feedback17
3.4 Model Reduction18
3.5 Robustness Requirement and Design Specifications22
3.6 LQG/LTR Robust Controllers25
3.7 Numerical Simulation29
4. Controller Synthesis: LMIs (Linear Matrix Inequalities) Approach39
4.1 Linear Matrix Inequalities39
4.2 Performance measurement40
4.2.1 H¥ system norm40
4.2.2 H2 system norm43
4.3 Full order output feedback controller construction with LMIs44
4.3.1 H¥ optimal controller synthesis45
4.3.2 H2 optimal controller synthesis 48
4.3.3 Controller construction with multiple objectives49
5. Application to Active Structural Control Benchmark Problems52
5.1 76-Story Building and Model53
5.2 Wind Excitations56
5.2.1 Davenport wind load spectrum for along-wind excitations57
5.2.2 Across-Wind Excitations from the Results of Wind Tunnel Tests 59
5.3 Design Constraints60
5.4 Performance Criteria61
5.4.1 Performance Criteria for Davenport wind load spectrum 61
5.4.2 Performance Criteria for Wind Tunnel Tests64
5.5 Statements of the Control Objectives66
5.6 LMI Formulation of the Design Specifications68
5.7 Numerical Analysis and Simulation Results71
5.7.1 the Benchmark Structure under Davenport Wind Load Spectrum71
5.7.2 the Benchmark Structure under Across-Wind Excitations from
the Results of Wind Tunnel Tests80
6. Conclusion Remarks87
Bibliography88
Appendix92
List of Tables pages
3.1. Maximum magnitudes of response quantities for a base-isolated building 103
3.2. Maximum magnitudes of response quantities for a fixed-base full-scaled building 103
5.1. Peak Response Quantities of the Benchmark Building Installed AMD System
with Different Controllers 104
5.2 RMS Response Quantities of the Benchmark Building Installed AMD
System with Different Controllers 105
5.3 H¥ Attenuation Constraints, Actual H¥ Attenuation, H2 Performance Bound
and H2 Actual Performance with Different Controllers 106
5.4 Evaluation Criteria for the sequential H2 Controllers 107
5.5 Damping ratios of the First Five Vibrational Modes with Different Controllers
and the Uncertainty of Building Stiffness 108
5.6 Peak Response Quantities of the Benchmark Building Installed AMD
System with Different Controllers 109
5.7 RMS Response Quantities of the Benchmark Building Installed AMD
System with Different Controllers 110
5.8 H¥ Attenuation Constraints, Actual H¥ Attenuation, H2 Performance Bound
and H2 Actual Performance with Different Controllers 111
5.9 Evaluation Criteria for the sequential H2 Controllers
case : 112
case : 113
case : 114
List of Figures pages
2.1 LQG controlled plant 116
3.1 LQG/LTR controller block diagram 117
3.2 Block Diagram of a General Compensated Plant with Uncertainty 117
3.3 Block Diagram of LQ Regulator 118
3.4 Block Diagram of Kalman Filter 118
3.5 Block Diagram of the Target Feedback Loop for the Augmented Plant 118
3.6 Block Diagram of LQG/LTR Robust Controller 119
3.7 (a) Base-Isolated Structural Model 119
3.7 (b)Structure Model with Active Bracing 119
3.8 EL-CENTRO Earthquake 120
3.9 Deformation of First and Fourth Floor Units 120
3.10 Absolute Acceleration of First and Fourth Floors 121
3.11 Bode Plots of Transfer Functions: Actuator to the First Floor Deformation 121
3.12 Two-State Reduced Order Model and Additive Modeling Error with Robustness 122
3.13 LQG/LTR Robust Controller Design Result 122
3.14 Frequency response: From earthquake excitations to first floor deformation 123
3.15 Control force (solid) and reference input (dashed) 123
5.1(a): Plan View of the 76-Story 124
5.1(b): Elevation View of the Benchmark Building. 124
5.2 Time Histories of Response Quantities of the 75th Floor Using LQG Control:
(a) Displacement Responses (b) Acceleration Responses (c) Required Control Force. 125
5.2 Time Histories of Response Quantities of the 75th Floor Using K2i(s):
(d) Displacement Responses (e) Acceleration Responses (f) Required Control Force. 125
5.3 Power Spectral Densities of the 75th Floor Using Different Controllers: 126
(a) Displacement PSD for “No Control”, “LQG Controller”, and “ K2i Controller”;
(b) Acceleration PSD for “No Control”, “LQG Controller”, and “ K2i Controller”;
(c) Acceleration PSD for “LQG Controller”, “ K2i Controller” and “K25 “ Controller.
5.4 Trade-off Lines Between the and performances 127
5.5 Additive Uncertainty Represents the Spillover Effects 128
5.6 vs. for Controllers and 128
5.7 Evaluation Criteria vs. Attenuation Constraints with the Uncertainty of
Building Stiffness 129
5.8 Time Histories of Response Quantities of the 75th Floor Using LQG Control:
(a) Displacement Responses (b) Acceleration Responses (c) Required Control Force. 130
5.8 Time Histories of Response Quantities of the 75th Floor Using K2i’’:
(d) Displacement Responses (e) Acceleration Responses (f) Required Control Force. 130
5.9 (a) The maximal singular values for wind excitations to the displacement of the
75th floor with the LQG controller; the controller and No Control case.
(c) The maximal singular values for wind excitations to the acceleration of the
75th floor with the LQG controller; the controller and No Control case. 131
5.10 Trade-off Lines Between the and performances 132
5.11 vs. for Controllers and 133
參考文獻 Abdel-Rohman, M. and Lepiholtz,H.H. (1981)," Structural control by pole assignment method," Journal of Engineering Mechanics Division, ASCE, Vol.107, No.ST7, July, pp1313-1325.
Ankireddi, S., Yang, J. N. and H.T.Y. (1996). “Simple ATMD control methodology for tall buildings subject to wind loads.” J. Struct. Engrg., ASCE,122(1),83-91.
Athans, M., Kapasouris, P., Kappos, E., and Spang H. A., (1986). "Linear quadratic gaussian with Loop-Transfer-Recovery Methodology for the F-100 engine." Journal of Guidance, Control and Dynamics, Vol. 9, No.1 , pp.45-51.
Balas, M. J. (1979). "Direct velocity feedback control of large space structures." J. of Guidance, Control and Dynamics, Vol. 9, No.1, pp. 85-91.
Boyd, S., El Ghaoui, E.Feron, and V. Balakrishnan, "Linear Matrix Inequalities in Systems and Control Theory". Philadelphia, PA:SIAM,1994.
Cao, H., Reinhorn, A.M., and Soong, T.T.(1997).”Design of an active mass damper for a tall TV tower in Nanjing, China.’J. Engrg. Struct.,20(3),134-143.
Chen, Pei-Yen, (1990). " Vibration suppression of flexible structures using collocated velocity feedback and nonlocal actuator control," Ph.D. Dissertation, Cornell University.
Chilali, M., Gahinet, P., (1996).“ H¥ design with pole placement constraints :an LMI approach.” IEEE Trans. Automatic Contr.,Vol.41, NO.3, 358-366.
Chung, L. L., Reinhorn, A. M. and Soong, T. T. (1988)" Experiments on active control of seismic structures," ASCE, Journal of Engineering Mecanics, Vol.114, No.2,pp.241-255.
Davison, E. J.(1966). ”A method for simplifying linear dynamic systems.” IEEE Trans. Automatic Control, 11(1),93-101.
Doyle, J. C., and G. Stein, (1981)." Multivariable Feedback Design: Concepts for Classical / Modern Synthesis," IEEE Trans.on Automatic Control, Vol.AC-26, No.1, pp.4-16, FEB.
Dyke, S.J.,Spencer Jr., B.F., Quast, P.Sain, M.K., Kaspari Jr., D.C., and Soong, T.T. (1996).”Accerleration feedback control of MDOF structures.”J. Engrg. Mech., ASCE,122(9),907-919.
Horn, R. and C. Johnson. "Topics in Matrix Analysis". Cambridge University Press, Cabridge, 1991.
Jabbari, F., Schmitendorf, W. E. and Yang, J. N., (1995). "H¥ Control for seismic-excited buildings with acceleration feedback." J. Engrg. Mech., ASCE, 121(9), 994-1002.
J. C. Doyle, K. Zhou, K. Glover, and Bodenheimer, (1994)”Mixed H2 and H¥ performances objectives II Optimal Control,”IEEE Trans. Automatic Contr. ,Vol. 39, 1575-1587.
Kose, I. E., Schmitendorf, W. E., Jabbari, F., and Yang, J. N.(1996) ” H¥ active seismic response control using static output feedback.” J. Engrg. Mech., ASCE, 122(7), 651-659.
Li-Teh Lu, Wei-Ling Chiang and Jhy-Pyng Tang, (1998).”LQG/LTR Control Methodology in Active Structural Control” J. Engrg. Mech., ASCE.Vol.124, No.4, pp446-454.
Lieven Vandenberghe and Stephen Boyd, (1994) “SDPSOL: Semi-Definite Programming Solver”.
Meirovitch, L. and Baruch, H. (1980) "Implementation of the IMSC methid by means of a varying number of actuators," Paper No.82-1035, AIAA/AAS/Astrodynamic Conference, San Diego CA.
Meirovitch, L. and Baruch, H. (1982)"Control of self-adjoint distributed parameter systems," Journal of Guidance, Control and Dynamics ,5, pp.60-66.
Michael, Green. and David, J. N. Limebeer (1995) ² Linear Robust Control,² Prentice Hall International, Inc.
Moore, B. C. (1981)." Principal component analysis in linear systems: controllability, observability, and model reduction," IEEE Trans. Automatic Control, Vol. AC-26, pp.17-31.
Ohtori,Y., R.E. Christenson and B.F. Spencer, Jr. (1999). "Benchmark Control Problems for Seismically Excited Nonlinear Buildings", Benchmark Problem Package Available at the World Wide Website:http://www-ce.engr.ccny.edu/people/faculty/Agrawal/benchmark.html
R. Nikoukhah, F. Delebecque and L. El Ghaoui (1998) LMITOOL: a Package for LMI Optimization in Scilab.
Ridgely, D. Brett., Banda, S. S., McQuade, T. E., and P. J. Lynch, (1987). " Linear quadratic gaussian with Loop-Transfer-Recovery Methodology for an unmanned aircraft." Journal of Guidance, Control and Dynamics, Vol. 10, No.1 , pp.82-89.
Samli, B., Yang, J. N., and Yeh, C.T.(1985).“ Control of lateral-torsional motion of wind-excited buildings.”J. Engrg. Mech., ASCE. 111(6),777-796.
Schmitendorf, W.E., Jabbari, F., and Yang, J. N. (1994). "Robust control techniques for buildings under earthquake excitation." J. Earthquake Engrg. and Struct. Dynamics, 23(5), 539-552.
Spencer, B. F., Suhardjo, J., and Sain, M. K. (1994)." Frequency domain optimal control strategies for a seismic protection." J. Engrg. Mech. ASCE, 120(1), 135-159.
Spencer, B. F., Dyke, S.J., and Deoskar, H.S (1998a).”Benchmark control control problems in structural control .I: Active mass driver system.” J. Earthquake Enrgr. And and Struct. Dynamics .
Spencer, B. F., Dyke, S.J., and Deoskar, H.S (1998b).”Benchmark control control problems in structural control .I: Active tendon system.” J. Earthquake Enrgr. And and Struct. Dynamics .
Spencer, Jr. B. F., Christenson, R.E., and Dyke, S. J.(1998c), "Next Generation Benchmark Control Problem For Seismically Excited Buildings", Proc. 2 nd World Conf.on Structural Control, Vol.2, pp.1351-1360, John Wiley & Sons, N.Y..
Stein, G. and Athans M., (1987)." The LQG/LTR procedure for multivariable feedback control design, " IEEE. Transactions on Automatic Control ,Vol. AC-32, No.2, pp.105-114.
Suhardjo, J., Spenser, B. F. ,and Ashan Kareem. (1992a). "Frequency domain optimal control of wind excited buildings." J. Engrg. Mech., ASCE, 118(12), 2463-2481.
Suhardjo, J., Spenser, B. F. ,and Ashan Kareem. (1992b). "Active control of wind excited buildings: a frequency domain based design approach." J. Wind Engrg. and Industrial Aerodynamics, Vol.41, 1985-1996.
Wu, J.C., Yang, J.N., and Schmitendorf, W.(1998a).”Reduced-order H¥ and LQR control for wind-excited tall buildings.” J. Engrg. Struct.,20(3),222-236.
Wu, J.C., Yang, J.N.(1998b).”Active control of transmission tower under stochastic wind.”J. Engrg. Struct.,124(11),1302-1312
Yang, J. N., (1975) "Application of optimal control theory to civil engineering structures," Journal of Engineering Mechanics Division, ASCE , Vol.101 , No.EM6 , DEC., pp819-838.
Yang, J. N., and Samali, B. (1983).”Control of tall buildings in along-wind motion.” J.Struct. Engrg., ASCE,109(1), 50-68.
Yang, J. N., Abbas Akbarpour and Peiman Ghaemmami, (1987)"New control algorithms for structural control," Journal of Engineering Mechanics Division, ASCE, Vol.113 , No.9 , SEP., pp1369-1386.
Yang, J. N., Wu, J. C., and Agrawal, A. K., (1995a). "Sliding mode control for seismically excited linear structures." J. Engrg. Mech., ASCE, 121(12), 1386-1390.
Yang, J. N., Wu, J. C., Agrawal, A. K., and Li, Z. (1995b). "Sliding mode control for nonlinear and hysteric structures." J. Engrg. Mech., ASCE, 121(12), 1330-1339.
Yang, J. N., Wu, J. C., Agrawal, A. K., and Hsu, S.Y.(1997),”Sliding mode control with compensators for wind and seismic response control.”J. Earthquake Enger. And Struct. Dyn., 26, 1137-1156.
Yang, J.N., Wu, J.C., Samali, B. and Agrawal, A.K. (1998), “A Benchmark Problem for Response Control of Wind-Excited Tall Buildings”, Proc. 2nd world Conference on Structural Control, Vol.2, pp. 1407-1416, John Wiley & Sons, New York.
Yang, J. N., Agrawal, A. K., Samali, B. and Wu, J. C. (1999),”A Benchmark Problem for Response Control of Wind-Excited Tall Buildings”, Benchmark Problem Package Available at the World Wide Website:http://www.eng.uci.edu/civil/civileng.html
Yao, J.T.P. (1972). "Concept of structural control." J. Struct. Div., ASCE, 98(7), pp.1567-1574.
Yu. Nesterov and A. Nemirovsky. "Interior point polynomial methods in convex programming", volume 13 od Studies in Applied Mathenatics. SIAM, Philadelphia, PA, 1994.
指導教授 蔣偉寧、唐治平
(Wei-Ling Chiang、Jhy-Pyng Tang)
審核日期 2002-1-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明