博碩士論文 85344005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:69 、訪客IP:3.238.227.73
姓名 邱智煇(Chih-Hui Chiu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 模糊集合之模糊度探討
(The study of fuzziness for fuzzy sets)
相關論文
★ 直接甲醇燃料電池混合供電系統之控制研究★ 利用折射率檢測法在水耕植物之水質檢測研究
★ DSP主控之模型車自動導控系統★ 旋轉式倒單擺動作控制之再設計
★ 高速公路上下匝道燈號之模糊控制決策★ 雙質量彈簧連結系統運動控制性能之再改良
★ 桌上曲棍球之影像視覺系統★ 桌上曲棍球之機器人攻防控制
★ 模型直昇機姿態控制★ 模糊控制系統的穩定性分析及設計
★ 門禁監控即時辨識系統★ 桌上曲棍球:人與機械手對打
★ 麻將牌辨識系統★ 相關誤差神經網路之應用於輻射量測植被和土壤含水量
★ 三節式機器人之站立控制★ 三節式機器人之爬行控制
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文探討的主題包括模糊集合(Fuzzy set)之模糊性(Fuzziness)研究、模糊數(Fuzzy number)之次序(Lattice)問題及模糊系統的穩定性(Stability of fuzzy system)研究。
首先,第二章提及如何利用熵(Entropy)來量測一個模糊集合的模糊程度,進一步討論到熵的一些特性。另外亦提到資訊量(Information energy)的觀念,並研究熵和資訊量之間的關係。除此之外,第三章和第四章中所提之模糊集合經模糊數學運算(Arithmetic operation)或經擴充定理(Extension Principle)之後熵的變化亦是討論的重點。本論文提出幾個簡單的公式來求得運算後所得之模糊集合的熵值。接著,本論文第五章還提出一些簡單的方法來求熵值,利用這些方法我們不須做積分運算便可容易地得到一個模糊集合的熵值。
另外,本論文對於模糊數次序的問題亦有所探討,並提出一速算法來取代傳統複雜的方法。
最後,模糊系統穩定性的問題在附錄中被討論。
摘要(英) In this dissertation, fuzzy sets’’ fuzziness is our main study topic. By the way, the lattice of fuzzy numbers and the stability of fuzzy systems are also discussed.
In Chapter 2, we investigate the entropy relationship between two same type of fuzzy sets and study some properties of the information energy. Then, the relationship between the information energy and the entropy of a fuzzy set is derived. Chapter 3 and Chapter 4 consider the entropy change of fuzzy numbers through arithmetic operations and function mapping. Several simple formulas to get the entropy value for the fuzzy numbers’’ sum and for the extension principle are proposed respectively. Chapter 5 proposes an new idea called "entropy unit" to get any fuzzy set’’s entropy value easily and quickly.
Moreover, Chapter 6 try to simplify the operations of MIN and MAX of fuzzy numbers such that the operations of MIN and MAX can be implemented easily and quickly.
關鍵字(中) ★ 熵
★ 模糊數學
★ 模糊理論
關鍵字(英) ★ Entropy
★ Fuzzy Arithmetic Operation
★ Fuzzy Theory
論文目次 封面
中文目錄
摘要
緒論
模糊集合之熵和資訊量的探討
模糊數經過模糊學運算後熵變化
經模糊數學運算或擴充定理後熵值的速算法
計算熵值的新方法
MIN 和 MAX 的速算法
結論
附錄
參考文獻 [1]R. Ambrosio and G. B. Martini, Maximum and minimum between fuzzy symbols in non-interactive and weakly non-interactive situations, Fuzzy Sets and Systems 12 (1984) 27-35.
[2]J. C. Bezdek, Analysis of fuzzy information, CRC Press, Boca Raton, 1987.
[3]Y. H. Chen and W. J. Wang, Fuzzy entropy management via scaling, elevation, and saturation, Fuzzy Sets and Systems 95 (1998) 173-178.
[4]D. Dubois and H. Prade, Fuzzy sets and systems: theory and applications, New York : Academic Press, 1980.
[4]D. Dubois and H. Prade, Fuzzy sets and systems: theory and applications, New York : Academic Press, 1980.
[6]D. Dumitrescu, Entropy of a fuzzy process, Fuzzy Sets and System 55 (1993) 169-177.
[7]D. Dumitrescu, Entropy of fuzzy dynamical systems, Fuzzy Sets and System 70 (1995) 45-57.
[8]D. Dumitrescu, A definition of an information energy in fuzzy sets theory, Studia Univ. Babes-bolyai Math. 22 (1977) 57-59.
[9]A. De Luca and S. Termini, A definition of non-probabilistic entropy in the setting of fuzzy sets theory, Information & Control 20 (1972) 301-312.
[10]T. Geerts, A note on lattices of euclidean subspaces, Automatica Vol 31, No. 2, pp.345-346, 1995.
[11]J. -S. R. Jang, C. -T, Sun and E. Mizutani, Neuro-Fuzzy and Soft Computing (Prentice-Hall, Inc., Upper Saddle River, New Jersey, 1997).
[12]A. Kaufmann, Introduction to the Theory of Fuzzy Subsets (Academic Press, New York, 1975).
[13]J. G. Kim and S. J. Cho, Structure of a lattice of fuzzy subgroups, Fuzzy Sets and Systems 89 (1997) 263-266.
[14]A. Kaufmann and M. M. Gupta, Introduction to Fuzzy Arithemetic Theory and Applications, (Van Nostrand Reinhold, 1991).
[15]G. J. Klir and B. Yuan, Fuzzy Sets and Fuzzy Logic Theory and Applications, (Prentic Hall PTR, NJ 07458, 1995).
[16]X. Liu, The least upper bound of content for realizable matrices on lattice [0,1],Fuzzy Sets and Systems 80 (1996) 257-259.
[17]M. Mares, Computation over fuzzy quantities, CRC Press, Boca Raton, 1994.
[18]D. L. Mon, C. H. Cheng and J. C. Lin, Evaluating weapon system using fuzzy analytic hierarchy process based on entropy weight, Fuzzy Sets and System 62 (1994) 127-134.
[19]L. Pardo, Information energy of a fuzzy event and a partition of fuzzy events, IEEE Trans. Systems, Man and Cybernet, Vol. SMC-15, No. 1 (1985) 139-144.
[19]L. Pardo, Information energy of a fuzzy event and a partition of fuzzy events, IEEE Trans. Systems, Man and Cybernet, Vol. SMC-15, No. 1 (1985) 139-144.
[21]W. Pedrycz, Why triangular membership function, Fuzzy Sets and Systems 64 (1994) 21-30.
[22]T. Terano, K. Asai and M. Sugeno, Fuzzy Systems Theorey and Its Applications (Academic Press. 1992).
[23]W. J. Wang and C. H. Chiu, Entropy variation on the fuzzy numbers with arithmetic operation, Fuzzy Sets and Systems 103 (1999) 443-455.
[24]W. J. Wang and C. H. Chiu, The entropy change of fuzzy numbers with arithmetic operations, Fuzzy Sets and Systems 111 (1999) 357-366.
[25]W. J. Wang and C. H. Chiu, The entropy change in extension principle, Fuzzy Sets and Systems 103 (1999) 153-162.
[26]L. Xuecheng, Entropy, distance measure and similarity measure of fuzzy sets and their relations, Fuzzy Sets and System 52 (1992) 305-318.
[27]R .R. Yager, On the measure of fuzziness and negation, Part I: membership in unit interval, Internat. J. General Systems 5 (1979) 221-229.
[28]C. Yu, Correlation of fuzzy numbers, Fuzzy Sets and Systems 55 (1993) 303-307.
[29]H. -J. Zimmermann, Fuzzy Set Theory and Its Applications (Kluwer-Nijhoff,Boston-Dordrecht-Lancaster,1985).
[30]K. L. Zhang and K. Hirota, On fuzzy number lattice , Fuzzy Sets and Systems 92 (1997) 113-122.
指導教授 王文俊(Wen-June Wang) 審核日期 2000-6-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明