博碩士論文 85344008 詳細資訊


姓名 尤芳銘(Fang-Ming Yu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 實用型模糊滑動模態控制器在非線性 系統的應用
(Practical Fuzzy Sliding Mode Controller for NonlinearSystems )
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文針對一般非線性系統,及具有不確定之時間延遲非線性輸入的高階
系統,提出一種基於狀態合成函數的單一模糊輸入模糊滑動模態控制器,以解決
模糊控制器過多輸入變數及改善控制器輸出的抖動現象,大略可以分成以下三點
來說明。
1. 在降低輸入變數方面,我們共提出兩種方法,首先在單一模糊輸入類似模糊
滑動模態控制方法中(single-fuzzy-input quasi fuzzy sliding mode control,
SQ-FSMC),提出了符號距離(signed distance) 的狀態變數合成觀念,在不
影響系統性能的前提下大幅減少規則數,第二種方法為去偶合的單一模糊輸
入模糊滑動控制器(Decoupled single-fuzzy-input fuzzy sliding mode
controller) 的設計,主要針對有偶合特性的系統來完成狀態合成,達到單一
模糊輸入變數的目的。
2. 在改善抖動現象的方面,主要藉著模糊控制器不斷調整在滑動平面附近的控
制輸入,以改善在滑動平面上快速切換的現象,同時又能夠保持系統的強健
性和穩定性。
3. 具有自調機制的單一模糊輸入的控制器(a self-tuning single-fuzzy- input
controllers, ST-SFIC) 能夠有效的處理具有非線性輸入的不確定時間延遲系
統,經過解模糊化推導後的輸入增益調整法則,能夠使得控制輸入的效率大
幅改善,並且在使用上相當方便。
以上各種控制方法係利用倒單擺與球桿系統的平衡模擬以及利用具有不確定時
間延遲非線性輸入的系統模擬來說明方法的可行性,並以實驗的結果驗証系統的
強健性與穩定性。
摘要(英) A practical fuzzy sliding mode controller for uncertain time-delay with nonlinear
input systems and for a class of nonlinear systems is presented. The controller design
deals with the problems of the dimensionality of fuzzy input variables in fuzzy logic
control (FLC) and the chattering phenomena in sliding mode control (SMC)
effectively. The main results of the proposed method are as follows.
1. We propose two methods to reduce the number of fuzzy input variables. First,
without affecting the performance of the system, the proposed single-fuzzy- input
quasi fuzzy sliding mode controller (SQ-FSMC) by way of a composite state
function reduces the number of rules greatly. Second ly, the design of decoupled
single-fuzzy- input fuzzy sliding mode controller (SFI-FSMC) for the fourth-order
coupled systems shows a better performance than previous work.
2. For the chattering problem of the SMC, this phenomenon can be reduced
effectively with the proposed controller by adjusting the control input near the
sliding hyperplane.
3. A self-tuning single-fuzzy-input controller (ST-SFIC) can be easily applied to
uncertain time-delay dynamical systems with nonlinear input. The self-tuning
scheme dramatically improves the control input behavior. Also, the chattering
phenomenon is eliminated effectively. The control algorithm is convenient and
easy to utilize.
The above methods have been illustrated by the simulation results of the pole and the
cart systems as well as the ball and beam systems. In addition, the uncertain
time-delay with a nonlinear input system can be stabilized to the equilibrium. The
experimental results of the present seesaw system with external disturbance are given.
關鍵字(中) ★ 非線性系統
★ 單一模糊輸入
★ 模糊滑動模態控制器
關鍵字(英) ★ fuzzy sliding mode controller
★ single fuzzy input
★ nonlinear systems
論文目次 Contents I
Abstract III
List of Figures V
List of Tables VIII
Chapter 1 Introduction
1.1 Motivation and Background 1
1.2 Organization and Main Tasks 3
Chapter 2 Problems Formulations
2.1 Single- input Plant System 8
2.2 Coupled System 9
2.3 Uncertain Time-delay System with Nonlinear Input 11
Chapter 3 Methodology
3.1 Design of Single-fuzzy- input Quasi-FSMC (SQ-FSMC) 16
3.2 Design of Decoupled Fuzzy Logic Controller 21
3.3 Design of FSMC for Uncertain Time-delay Systems with
Nonlinear Input 25
3.4 Design of Self-tuning Single-fuzzy- input Controller (ST-SFIC) for
Uncertain Time-delay Systems with Nonlinear Input 31
3.4.1 Single- fuzzy- input Controller (SFIC) for Uncertain
Time-delay Systems with Nonlinear Input 31
3.4.2 Self-tuning Scheme and Scaling Factor 34
Chapter 4 Examples and Simulations
4.1 Two Examples of Single-fuzzy- input Quasi-FSMC (SQ-FSMC) 46
4.2 Three Examples of Decoupled Fuzzy Logic Controller 51
4.3 Example of FSMC for Uncertain Time-delay Systems with
Nonlinear Input 56
4.4 Example of Self- tuning Single-fuzzy- input Controller (ST-SFIC)
for Chattering Elimination of Uncertain Time-delay Systems with
Nonlinear Input 59
Chapter 5 Discussion and Conclusions 84
References 86
Author’s Information 92
Publication List 93
參考文獻 86
References
[1] H. Allamehzadeh and J. Y. Cheung, “Design of a stable and robust fuzzy
controller for a class of nonlinear system”, Proceedings of the fifth IEEE
International Conference on Published vol. 3, pp. 2150-2154, 1996.
[2] G. Bartolini and A. Ferrara, “Multivariable fuzzy sliding mode control by using
a simplex of control vectors”, in Fuzzy reasoning in Information, Decision, and
Control Systems, S. G. Tzafestas and A. N. Venetsanopoulos, Eds. Amsterdam,
The Netherlands: Kluwer, pp. 307-328, 1994.
[3] C. L. Chen, P. C. Chen, and C. K. Chen, “Analysis and design of fuzzy control
system”, Fuzzy Sets Syst, vol. 57, no. 2, pp. 125-140, July 1993.
[4] S. Y. Chen, F. M. Yu, and H. Y. Chung, “Decoupled fuzzy controller design with
single- input fuzzy logic”, Fuzzy Sets and Systems, vol. 129, pp. 335-342, 2002.
[5] Y. H. Chen, “Adaptive robust control of uncertain systems with measurement
noise”, Automatica, vol. 28, pp. 715–728, 1992.
[6] B. J. Choi, S. W. Kwak, and B. K. Kim, “Design and stability analysis of
single- input fuzzy logic controller”, IEEE Trans. Syst., Man, Cybern. B, vol. 30,
no. 2, pp. 303-309, April 2000.
[7] B. J. Choi, S. W. Kwak, and B. K. Kim, “Design of a single- input fuzzy logic
controller and its properties”, Fuzzy Sets and Systems, vol. 106, pp. 299-308,
1999.
87
[8] S. B. Choi and J. S. Kim, “A fuzzy-sliding mode controller for robust tracking
of robotic manipulators”, Mechatronics, vol. 7, pp. 199–216, 1997.
[9] C. C. Fuh and P. C. Tung, “Robust stability analysis of fuzzy control systems”,
Fuzzy Sets and Systems, vol. 88, pp. 289–298, 1997.
[10] S. Galicher and L. Foulloy, “Fuzzy controllers: Synthesis equivalence”, IEEE
Trans. Fuzzy Syst., vol. 3, pp. 140-148, May 1995.
[11] J. S. Glower and J. Munighan, “Design fuzzy controllers from a variable
structures standpoint”, IEEE Trans. Fuzzy Syst., vol. 5. no. 1. pp. 138-144,
February 1997.
[12] Q. P. Ha, D. C. Rye, and H. F. Durrant Whyte, “Fuzzy moving sliding mode
control with application to robotic manipulators”, Automatica, vol. 35, pp.
607-616, 1999.
[13] K. C. Hsu, “Adaptive variable structure control design for uncertain
time-delayed systems with nonlinear input”, Dynamics and Control, vol. 8, pp.
341-354, 1998.
[14] G. C. Hwang and S. C. Lin, “A stability approach to fuzzy control design for
nonlinear systems”, Fuzzy Sets and Systems, vol. 48, pp. 279-287, 1992.
[15] Y. R. Hwang and M. Tomizuka, “Fuzzy smoothing algorithms for variable
structure systems”, IEEE Trans. Fuzzy Syst., vol. 2, pp. 277-284, Nov. 1994.
[16] A. Ishigame, T. Furakawa, S. Kawamoto, and T. Taniguchi, “Sliding mode
controller design based on fuzzy inference for nonlinear systems”, IEEE Trans
88
Industrial Electronics, vol. 40, pp. 64-70, 1993.
[17] S. W. Kim and J. J. Lee, “Design of a fuzzy controller with fuzzy sliding
surface”, Fuzzy Sets and Systems, vol. 71, pp. 359-367, 1995.
[18] C. C. Kung and C. C. Liao, “Fuzzy-sliding mode controller design for tracking
control of non- linear system”, Proceedings of the American Control Conference,
pp. 180-184, June 1994.
[19] C. C. Kung and S. C. Lin, “Fuzzy controller design: A sliding mode approach”,
in Fuzzy Reasoning in Information, Decision, and Control Systems, S. G.
Tzafestas and A. N. Venetsanopoulos, Eds. Amsterdam, The Netherlands:
Kluwer, pp. 277-306, 1994.
[20] M. L. Lee, H. Y. Chung, and F. M. Yu, “Modeling of hierarchical fuzzy
systems”, Fuzzy Sets and Systems. (to appear)
[21] M. L. Lee, “Hierarchical fuzzy control with applications to seesaw systems”, M.
S. thesis, Department of Electrical Engineering, National Central University,
2000.
[22] H. X. Li and H. B. Gatland, “Conventional fuzzy control and its enhancement”,
IEEE Trans. Syst., Man, Cybern. B, vol. 26, pp. 791–797, 1996.
[23] H. X. Li and H. B. Gatland, “A new methodology for designing a fuzzy logic
controller”, IEEE Trans. Syst., Man, Cybern., vol. 25, pp. 505–512, 1995.
[24] W. S. Lin, and C. S. Chen, “Robust adaptive sliding mode control using fuzzy
modelling for a class of uncertain MIMO nonlinear systems”, Control Theory
89
and Applications, IEE Proceedings part D, vol. 149, pp 193-201, 2002.
[25] K. Liu and F. L. Lewis, “Some issues about fuzzy control”, in proc. IEEE Conf.
Decision Contr. , San Antonio, TX, vol. 2, pp. 1743-1748, Dec. 1993.
[26] J. C. Lo and Y. H. Kuo, “Decoupled Fuzzy Sliding-Mode Control”, IEEE Trans.
Fuzzy Syst., vol. 6. no. 3, pp. 426-435, August 1998.
[27] Y. S. Lu and J. S. Chen, “A self-organizing fuzzy sliding-mode controller
design for a class of nonlinear servo systems”, IEEE Trans. Ind. Electron., vol.
41, pp. 492–502, Oct. 1994.
[28] N. Luo and M. De La Sen, “State feedback sliding mode control of a class of
uncertain time delay systems”, IEE Proceeding part D, vol. 140, pp. 261-274,
1993.
[29] N. Luo, M. De La Sen, and J. Rodellar, “Robust stabilization of a class of
uncertain time delay systems in sliding mode”, Int. J. of robust and nonlinear
control, vol. 7, pp. 59–74, 1997.
[30] M. S. Mahmoud, “Adaptive control of a class of time-delay systems with
uncertain parameters”, Int. J. Control, vol. 63, pp. 937–950, 1996.
[31] E. H. Mamdani, “Applications of fuzzy algorithms for simple dynamic plants”,
Proc. IEE 121, pp. 1585-1588, 1974.
[32] R. K. Mudi and N. R. Pal, “A robust self-tuning scheme for PI- and PD-type
fuzzy controllers”, IEEE Trans. Fuzzy Syst., vol. 7. no. 1. pp. 2-16, February
1999.
90
[33] S. Oucheriah, “Robust sliding mode control of uncertain dynamic delay systems
in the presence of matched and unmatched uncertainties”, ASME J. of Dynamic
Systems, Measurement, and Control, vol. 119, pp. 69–72, 1997.
[34] S. Oucheriah, “Dynamic compensation of uncertain time-delay systems using
variable structure approach”, IEEE Trans. on Circuits and Systems-I, vol. 42, pp.
466–470, 1995.
[35] R. Palm, “Designs of Fuzzy Controllers”, in Fuzzy Systems Modeling and
Control, (H. T. Nguyen, M Sugeno, Eds), The Handbooks of Fuzzy Sets,
Kluwer Academic, Boston, pp. 227-272, 1998.
[36] R. Palm, “Robust control by fuzzy sliding mode”, Automatica, vol. 30, no.9, pp.
1429–1437, 1994.
[37] R. Palm, “Sliding mode fuzzy control”, in Int. Control Fuzzy Syst., pp. 519–526,
1992.
[38] K. Shyu and J. Yan, “Variable-structure model following adaptive control for
systems with time-varying delay”, Control theory and Advanced Technology,
vol. 10, pp. 513-521, 1994.
[39] C. H. Tsai, H. Y. Chung, and F. M. Yu, “Neuro-sliding mode control with its
applications to seesaw systems”, IEEE Trans. on Neural Network. (to appear)
[40] V. I. Utkin, K. D. Young, “Methods for constructing discontinuity planes in
multidimensional variable structure systems”, Automation Remote Control, vol.
39, pp. 1466-1470, 1979.
[41] H. B. Verbruggen, H. J. Zimmermann, and R. Babuska, “Fuzzy Algorithms for
Control”, Kluwer Academic, Boston, 1999.
[42] Z. W. Woo, H. Y. Chung, and J. J. Lin, “A PID type fuzzy controller with
self-tuning scaling factors”, Fuzzy Sets and Systems, vol. 115, pp.321-326, 2000.
[43] S. Y. Yi and M. J. Chung, “Systematic design and stability analysis of a fuzzy
logic controller”, Fuzzy Sets and Systems, vol. 72, pp. 271–298, 1995.
[44] F. M. Yu, H. Y. Chung, and S. Y. Chen, “Fuzzy-sliding mode controller design
for uncertain time-delayed systems with nonlinear input”, Fuzzy Sets and
Systems. (to appear)
[45] F. M. Yu, H. Y. Chung, and C. N. Huang, “The Robust Stability of Seesaw
System with Fuzzy Logic Control”, International Journal of Computer
Applications in Technology.. (to appear)
指導教授 鍾鴻源(Hung-Yuan Chung) 審核日期 2003-7-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡