博碩士論文 85345005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:3.81.28.94
姓名 謝英瀋(Ing-Sheen Hsieh)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 彩色影像分析及其應用於色彩量化影像搜尋及人臉偵測
(Color Image Analysis and Its Applications to Color Quantization, Image Retrieval, and Face Detection)
相關論文
★ 使用視位與語音生物特徵作即時線上身分辨識★ 以影像為基礎之SMD包裝料帶對位系統
★ 手持式行動裝置內容偽變造偵測暨刪除內容資料復原的研究★ 基於SIFT演算法進行車牌認證
★ 基於動態線性決策函數之區域圖樣特徵於人臉辨識應用★ 基於GPU的SAR資料庫模擬器:SAR回波訊號與影像資料庫平行化架構 (PASSED)
★ 利用掌紋作個人身份之確認★ 利用色彩統計與鏡頭運鏡方式作視訊索引
★ 利用欄位群聚特徵和四個方向相鄰樹作表格文件分類★ 筆劃特徵用於離線中文字的辨認
★ 利用可調式區塊比對並結合多圖像資訊之影像運動向量估測★ 中英文名片商標的擷取及辨識
★ 利用虛筆資訊特徵作中文簽名確認★ 基於三角幾何學及顏色特徵作人臉偵測、人臉角度分類與人臉辨識
★ 一個以膚色為基礎之互補人臉偵測策略★ 利用指紋紋路分佈順序及分佈模型作指紋自動分類
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文中,首先分析影像中的色彩,然後把其結果應用到色彩量化、影像搜尋及人臉偵測上。我們首先我們提出了一個色彩量化的獨創方法,此法的量化誤差非常的小,這歸功於我們結合於精減RGB色彩空間及適應性群聚方法,並且結合指定色點分類法也可加速執行速度。我們提出的方法不但有好性能且執行快速。另外,我們介紹以色彩區域為基礎的多專家影像搜尋系統,在此系統中我們採用了三個互補的色彩區域為基礎影像搜尋系統;色彩影像搜尋系統、形狀影像搜尋系統及相對關係影像搜尋系統。我們先定義虛擬機率來表示雙個影像的相似性,再利用測量值相依方法來融合各別搜尋系統使成總成相似機率,根據此總成相似機率,我們可以把相似影像從影像資料庫中依序找出來。除此之外,我們尚且利用動態選擇方法來提昇整體的性能,從實驗中可以証實本方法的可行性。
最後,我提出了一個結合色彩及形狀的方法來偵測人臉位置。利用群聚為基礎的分割方法,我們可以儘可能放寬色彩頻帶來包含所有人臉,如此便可以從各種複雜背景影像中正確偵測出人臉正確位置所在,而不必限定於單純背景或需打燈光,實驗結果也很令人滿意。
摘要(英) The colors embedded in an image are firstly analyzed. Then, the results are applied to color quantization, color image retrieval and face detection. In the dissertation, an adaptive clustering algorithm for color image quantization is presented first. In our approach, a superposed 3D histogram is first calculated. Then, the sorted histogram list is fed into an adaptive clustering algorithm to extract the palette colors in the image. Finally, a destined pixel mapping algorithm is applied to classify pixels into their corresponding palette colors. The quantized error of our proposed algorithm is very small due to the combination of the reduced RGB color space utilization and the adaptive clustering algorithm. Besides, the executing speed of our proposed algorithm is also quite fast due to the reduced RGB color space, sorted histogram list, suitable color design and destined pixel mapping. Experimental results reveal the feasibility and superiority of our proposed approach in solving color quantization problem.
Secondly, a novel region-based multiple classifier color image retrieval system is presented. In our approach, a region-growing technique is firstly employed to cluster connected color pixels with the same color in an image to form color regions which are the primitive elements utilized in our proposed approach. Then, three complementary region-based classifiers are selected in the classifier selection stage, which include color classifier, shape classifier and relational classifier. In each classifier, a virtual probability representing the probability that an image is similar to the query image is defined. Thereafter, a set of virtual probabilities is calculated in each classifier. Next, the measurement dependent methods are applied to combine the virtual probabilities of classifiers in the decision combination stage. Besides, the dynamic selection scheme designed in the decision combination stage can further improve the system performance dramatically. Experimental results further reveal the feasibility and validity of our proposed approach in solving color image retrieval problem.
Lastly, a novel face detection algorithm is presented to locate multiple faces in color scenery images. A binary skin color map is first obtained in the color analysis stage. Then, color regions corresponding to the facial and non-facial areas in the color map are separated with a clustering-based splitting algorithm. Thereafter, an elliptic face model is devised to crop the real human faces through the shape location procedure. Last, local thresholding technique and a statistic-based verification procedure are utilized to confirm the human faces. The proposed detection algorithm combines both the color and shape properties of faces. In this work, the color span of human face can be expanded as wilder as possible to cover different faces by using the clustering-based splitting algorithm. Experimental results also reveal the feasibility of our proposed approach in solving face detection problem.
關鍵字(中) ★ 色彩分類
★ 多專家系統
★ 色彩量化
★ 人臉偵測
★ 影像搜尋
★ 小波轉換
關鍵字(英) ★ Color quantization
★ Face detection
★ Decision combination
★ Multiple classifiers
★ Bipartite weighted matching
★ Wavelet transform
★ Image retrieval
★ Color classification
論文目次 COVER
CONTENT
LIST OF FIGURES
LIST OF TABLES
CHAPTER 1 INTRODUCTION
1.1 Motivation
1.2 Survey of related works
1.3 Organization of the dissertation
CHAPTER 2 COLOR IMAGE ANALYSIS
2.1 Introduction
2.2 Brief description of the proposed color region extraction algorithm
2.3 Color system used in the proposed face detection algorithm
CHAPTER 3 AN ADAPTIVE COLOR QUANTIZATION
3.1 Superposed 3D histogram
3.2 Adaptive clustering algorithm
3.3 Destined pixel mapping
3.4 Experimental results
CHAPTER 4 COLOR IMAGE RETRIEVAL SYSTEMS
4.1 Color classifier
4.2 Shape classifier
4.3 Relational classifier
4.4 Multiple classifiers
CHAPTER 5 A STATISTIC APPROACH TO THE DETECTION OF HUMAN FACES
5.1 Color classification
5.2 The clustering-based splitting algorithm
5.3 Model-based face location
5.4 Candidate face verification
5.5 Experimental results
CHAPTER 6 CONCLUSIONS AND FUTURE WORKS
REFERENCES
參考文獻 [1] P. Heckbert, Color image quantization for frame buffer display, Computer & Graphics 16, pp. 297-307, 1982.
[2] X. Wu and I. H. Witten, A fast k-means type clustering algorithm, Technique Report, Department of Computer Science, University of Calgary, Calgary, Canada, 1985.
[3] G. Joy and Z. Xiang, Center-cut for color image quantization, The Visual Computer 10, pp. 62-66, 1993.
[4] S. J. Wan, P. Prusinkiewicz and S. K. M. Wong, Variance-based color image quantization for frame buffer display, Color Research and Application 15, pp. 52-58, 1990.
[5] C. Y. Yang and J. C. Lin, RWM-cut for color image quantization, Computer & Graphics 20 ( 4), pp. 577-588, 1996.
[6] C. K. Yang and W. H. Tsai, Color image compression using quantization, thresholding, and edge detection techniques all based on moment-preserving principle, Pattern Recognition Letter 19, pp. 205-215, 1998.
[7] M. T. Orchard and C. A. Bouman, Color quantization of images, IEEE Trans. Signal Processing 39, (12), pp. 2677-2690, 1991.
[8] S. A. Shafer and T. Kanade, Color vision. In: Shapiro, S. C., Eckroth, D. (Eds.), Encyclopedia of Artificial Intelligence, Wiley, New York, pp. 124-131, 1987.
[9] M. Celenk, A color clustering technique for image segmentation, Computer Vision, Graphics and Image Processing 52, pp. 145-170, 1990.
[10] Y. W. Lim and S. U. Lee, On the color image segmentation algorithm based on the thresholding and the fuzzy C-means techniques, Pattern Recognition 23 (9), pp. 935-952, 1990.
[11] Z. Xiang, Color image quantization by minimizing the maximum intercluster distance, ACM Trans. on Graphics 16 (3), pp. 260-276, 1997.
[12] P. Scheunders, A comparison of clustering algorithms applied to color image quantization, Pattern Recognition Letter 18, pp. 1379-1384, 1997.
[13] P. Scheunders, A genetic c-means clustering algorithm applied to color image quantization, Pattern Recognition 30 (6), pp. 859-866, 1997.
[14] H. C. Lin, L. L. Wang and S. N. Yang, Color Image Retrieval Based on Hidden Markov Models, IEEE Trans. Image Processing 6(2), pp. 332-339, 1997.
[15] M. J. Swain and D. H. Ballard, Color Indexing , Inter. J. Computer Vision 7(1), pp. 11-32, 1991.
[16] A. K. Jain, and A. Vailaya, Image Retrieval Using Color and Shape, Pattern Recognition 29(8), pp. 1233-1244, 1996.
[17] B. M. Mehtre, M. S. Kankanhalli, A. D. Narasimhalu, and G. C. Man, Color Matching for Image Retrieval, Pattern Recognition Letter 16, pp. 325-331, 1995.
[18] M. S. Kankanhalli, B. M. Mehtre, and J. K. Wu, Cluster-Based Color Matching for Image Retrieval, Pattern Recognition 29(4), pp. 701-708, 1996.
[19] C. H. Lee, J. S. Kim and K. H. Park, Automatic human face location in a complex background using motion and color information, Pattern Recognition, vol. 29, no. 11, pp. 1877-1889, 1996.
[20] Y. Dai and Y. Nakano, Face-texture model based on SGLD and its application in face detection in a color scene, Pattern Recognition, vol. 29, no. 6, pp. 1007-1017, 1996.
[21] C. Chen and S. P. Chiang, Detection of human faces in colour images, IEE Proc.-Vis. Image Signal Processing, vol. 144, no. 6, 1997.
[22] E. Saber and A. M. Tekalp, Frontal-view face detection and facial feature extraction using color, shape and symmetry based cost functions, PRL 19, pp. 669-680, 1998.
[23] M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang, B. Dom, M. Gorkani, J. Hafine, D. Lee, D. Petkovic, D. Steele, and P. Yanker, “Query by image and video content: The QBIC system”, IEEE Trans. Comp., pp. 23-32, 1995.
[24] L. K. Huang and M. J. J. Wang, “Efficient shape matching through model-based shape recognition”, Pattern Recognition, Vol. 29, No. 2, pp. 207-215, 1996
[25] A. M. N. Fu and H. Yan, “Effective classification of planar shapes based on curve segment properties”, Pattern Recognition Letter 18, pp. 55-61, 1997.
[26] Q. M. Tieng and W. W. Boles, “Recognition of 2d object contours using the wavelet transform zero-crossing representation”, IEEE Trans. on PAMI, Vol. 19, No. 8, pp. 910-916, 1997.
[27] G. Lu, “An approach to image retrieval based on shape”, Journal of Information Science, Vol. 23, No. 2, pp. 119-127, 1997.
[28] E. H. Liang and D. L. Mou, “An algorithm of computing spatial similarity between images”, in Proceeding of IPPR Conference on Computer Vision, Graphics and Image Processing, Taiwan, pp. 115-121, 1997.
[29]Y. Rui and T. S. Huang, “Image retrieval: current techniques, promising directions, and open issues”, Journal of Visual Comm. and Image representation, vol. 10, pp. 39-62, 1999.
[30] F. Kimura and M. Shridhar, “ Handwritten numerical recognition based on multiple algorithms”, Patt. Recog., vol. 24, no. 10, pp. 969-983, 1991.
[31] L. Xu, A. Krzyzak and C. Y. Suen, “Methods of combining multiple classifiers and their applications to handwriting recognition”, IEEE Trans. Syst., Man, Cybern., vol. 22, no. 3, pp. 418-435, 1992.
[32] A. F.R. Rahman and M. C. Fairhurst, “A new hybrid approach in combining multiple experts to recognise handwritten numerals”, Patt. Recog. Lett., vol. 18, pp. 781-790, 1997.
[33] T. K. Ho, J. J. Hull and S. N. Srihari, “Decision combination in multiple classifier systems”, IEEE Trans. Patt. Anal. Mach. Intell., vol. 16, no. 1, pp. 66-75, 1994.
[34] J. Kittler, M. Hatef, R. P.W. Duin and J. Matas, “On combining classifiers”, IEEE Trans. Patt. Anal. Mach. Intell., vol. 20, no. 3, pp. 226-239, 1998.
[35] T. C. Chang, T. S. Huang and C. Novak, Facial feature extraction from color images, In: internat. Conf. on PR, Israel, Octotor, pp. 39-43, 1994.
[36] Q. Chen, H. Wu and M. Yachida, Face detection by fuzzy pattern matching, In: internat. Conf. on CV, pp. 591-596, 1995.
[37] J. T. Tou and R. C. Gonzalez, Pattern recognition principles, Addison-Wesley, 1974.
[38] Y. Linde, A. Buzo and R. Gray, An algorithm for vector quantizer design, IEEE Trans. Communication, COM-28 (1), pp. 84-95, 1980.
[39] L. J. Liu and Y. H. Yang, Multiresolution color image segmentation, IEEE Trans. PAMI, vol. 16, pp. 689-700, 1994.
[40] G. Cortelazzo, G. A. Main, G. Vezzi, and P. Zamperoni, Trademark Shapes Description by String Matching Techniques, Pattern Recognition 27(8), pp. 1005-1018, 1994.
[41] A. J. Hsieh, K. C. Fan, and T. I. Fan, Bipartite Weighted Matching for On-Line Hand Written Chinese Character Recognition, Pattern Recognition 28(2), pp. 143-151, 1995.
[42] A. Itai, M. Rodeh and S. L. Tanimoto, Some matching problems for bipartite graphs, J. ACM 25, pp. 517-525, 1978.
[43] A. J. Hsieh, C. W. Ho, and K. C. Fan, “An extension of the bipartite weighted matching problem”, Patt. Recog. Lett., vol. 16, pp. 347-353, 1995.
[44] C. H. Papadimitriou and K. Steiglitz, “Combinatorial optimization”, Prentice Hall, Englewood, Cliffs, New Jersey, 1982.
[45] M. L. Freman and R. E. Tarjan, Fibonacci Heaps and Their Uses in Improved Network Optimization Algorithms, J. ACM 31, pp. 595-600, 1987.
[46] P. Zhu and P. M. Chirlian, “On critical point detection of digital shapes”, IEEE Trans. on PAMI, Vol. 17, No. 8, pp. 737-748, 1995.
[47] J. S. Lee, Y. N. Sun, C. H. Chen and C. T. Tai, “Wavelet based corner detection”, Pattern Recognition, Vol. 26, No. 6, pp. 853-865, 1993.
[48] B. K. Ray and K. S. Ray, “Corner detection using iterative Gaussian smoothing with constant window size”, Pattern Recognition, Vol. 28, No. 11, pp. 1765-1781, 1995.
[49] P. Cornic, “Another look at the dominant point detection of digital curves”, Pattern Recognition Letter 18, pp. 13-25, 1997.
[50] S. Mallat, “Zero-crossings of a wavelet transform”, IEEE Trans. on Information Theory, Vol. 37, No. 4, pp. 1019-1033, 1991.
[51] C. T. Zahn and R. Z. Roskies, “Fourier descriptors for plane closed curves”, IEEE Trans. Comp., vol. C-21, no. 3, pp. 269-281, 1972.
[52] L. G. Shapiro and R. M. Haralick, “A metric for computing relational description”, IEEE Tanns. on PAMI-7, pp. 90-94, 1985.
[53] L. G. Shapiro and R. M. Haralick, “Structural descriptions and inexact matching”, IEEE Tanns. on PAMI-3, pp. 504-519, 1981.
[54] L. Cinque, D. Yasuda, L. G. Shapiro, S. Tanimoto and B. Allen, “An improved algorithm for relational distance graph matching”, Patt. Recog., vol. 29, no. 2, pp. 349-359, 1996.
[55] “Flags of the World”, originally published by KAISEI-SHA PUBLISHING CO., LTD. TOKYO JAPAN, 1992.
[56] A. K. Jain and A. Vailaya, “Shape-based retrieval: a case study with trademark image databases”, Patt. Recog., vol. 31, no. 9, pp. 1369-1390, 1998.
[57] W. S. Lin and S. Y. Chen, “Robust image retrieval using color and shape”, The master thesis of Electrical Engineering and Computer Engineering and Science of Yuan-Ze Institute of Technology, Taiwan, R.O.C., 1997.
[58] M. Li and P. S. Wu, Pyramid edge detection for color images, Optical Engineering 36(5), pp.1431-1437, 1997.
[59] K. C. Yow and R. Cipolla, Feature-based human face detection, Image and Vision Computing 15, pp. 713-735, 1997.
[60] I. Craw, H. Ellis and J. R. Lishman, Automatic extraction of face-features, PRL 5, pp. 183-187, 1987.
[61] C. L. Huang and C. W. Chen, Human facial feature extraction for face interpretation and recognition, PR, v. 25, n. 12, pp. 1435-1444, 1992.
[62] G. Chow and X. Li, Towards a system for automatic facial feature detection, PR, v. 26, n. 12, pp. 1739-1755, 1993.
[63] D. W. Purnell, C. Nieuwoudt and E. C. Botha, Automatic face recognition in a heterogeneous population, PRL 19, pp. 1067-1075,1998.
[64] G. Yang and T. S. Huang, Human face detection in a complex background, Pattern Recognition, vol. 27, no. 1, pp. 53-63, 1994.
[65] T. Kondo and H. Yan, Automatic human face detection and recognition under non-uniform illumination, Pattern Recognition, v. 32, pp. 1707-1718, 1999.
[66] The collections of vector iconographs, Newtype Infortech Co., Ltd. Taipei, Taiwan, 1999.
指導教授 范國清(Kuo-Chin Fan) 審核日期 2000-12-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明