博碩士論文 86226026 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:3.17.150.163
姓名 古建德(Jian-De Gu)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 低溫大面積直接沉積複晶矽薄膜之技術開發
(Technology Development of the Direct Fabrication of Large-area Polycrystalline Silicon Thin Films at Low Temperature)
相關論文
★ 大面積低溫微波電漿輔助化學氣相沉積矽薄膜之研究★ 超硬保護膜之抗腐蝕研究
★ 大面積低溫微波電漿輔助化學氣象沉積薄膜之研究★ 以電漿輔助化學氣相沉積法室溫成長氧化鋅薄膜之研究
★ 低溫製作大晶粒複晶矽薄膜之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究分兩階段進行,第一階段應用偏壓輔助射頻電感耦合式電漿輔助化學氣相沉積系統(RF-biased RF inductively-coupled PECVD),以矽烷(SiH4)、氫氣(H2)、氬氣(Ar)等混合氣體為原料,成功地在玻璃基板及單晶矽基板上直接成長大晶粒複晶矽薄膜。第二階段則應用可調式陣列天線微波電漿輔助化學氣相沉積系統(Adjustable Array Antenna Microwave PECVD, Triple-A M-PECVD)進行矽薄膜之大面積低溫沉積,目標是在34 cm ´ 45 cm的基板面積上成長出複晶矽薄膜。
在第一階段的實驗中,利用偏壓效應可成功地在82 °C以下成長出晶粒尺寸約為0.15 ~ 0.3 μm的複晶矽薄膜。經XRD繞射分析得知矽薄膜具有(111)-Si的優選方向,經FTIR檢測後發現薄膜均含氫。研究中發現,在適當的電容耦合能量範圍內,此RF能量可視為基板負偏壓效應。隨偏壓能量增加,對晶粒尺寸、薄膜結晶性、沉積速率等特性有改善效果。另一方面,在較大的電容耦合能量下,電容耦合與電感耦合所形成的電漿區有疊加效應,適合複晶矽薄膜沉積的範圍可由單一位置再擴大至約10 cm徑向的範圍內。
在第二階段的實驗中,利用天線陣列可將微波範圍放大,形成一個大面積化的微波電漿源。在使用與第一階段相同的氣體原料下,藉由改變微波功率、射頻功率、反應氣體流量、鍍膜時間等參數,來研究其對矽薄膜品質的影響。本實驗中H2/SiH4之最佳氣體流量比例為25,在此比例下矽薄膜之晶粒尺寸可藉由增加微波功率、延長鍍膜時間等實驗參數來改善,最大尺寸可達100 nm。薄膜沉積之面積可達基板面積的70 % 以上,且表面粗糙度變化在5 % 以內,沉積溫度依然低於82 °C,然而厚度均勻性及薄膜結晶性依然有待改進。
摘要(英) Large-area polycrystalline silicon (poly-Si) thin films are fabricated by employing both the RF-biased RF inductively-coupled PECVD and the Adjustable Array Antenna (Triple-A) microwave PECVD system at temperature lower than 82 °C. High purity (99.99 %) SiH4, H2, and Ar are introduced as reaction gases, and ultrasonically cleaned glasses and p-type (100) silicon wafers are used as substrates.
In the RF-biased RF inductively-coupled PECVD system, poly-Si thin films with grain size about 0.15 ~ 0.3 μm are successfully fabricated by applying another capacitively-coupled RF power on substrates. All crystalline silicon films exhibit (111)-Si preferred orientation. Under proper deposition conditions, the capacitively-coupled RF power can be taken as bias. The deposition rate, grain size, and crystallinity of poly-Si thin films are improved as the RF bias power increased to 5 watts. However, under higher RF bias power, the superposition of the plasma regions generated by the RF main power and the RF bias power are observed; thus results in a proper plasma environment with 10 cm wide in axial direction for poly-Si thin films deposition.
In the triple-A microwave PECVD system, three sets of array antenna composed by many copper rods with adjustable length are employed to couple the large-area microwave power into the deposition chamber. Silicon films with grain sizes about 80 ~ 100 nm and surface roughness uniformity within 5 % are successfully deposited over 70 % of the 34 cm ´ 45 cm substrate holder. Further studies will focus on the modification of the system design so as to reach the goal to deposit silicon films with improved crystallinity, larger grain sizes, and more uniformity over the large area.
關鍵字(中) ★ 大面積微波電漿源
★ 電漿輔助化學氣相沉積法
★ 射頻偏壓
★ 低溫製作
★ 複晶矽薄膜
關鍵字(英) ★ Large-area Microwave Plasma Source
★ Polycrystalline Silicon Thin Film
★ RF-bias
★ Low-temperature Fabrication
★ Plasma-enhanced Chemical Vapor Deposition
論文目次 中文摘要 ……………………………………………………… i
英文摘要 ……………………………………………………… ii
謝誌 ……………………………………………………… iii
目錄 ……………………………………………………… iv
圖目錄 ……………………………………………………… vi
表目錄 ……………………………………………................ x
第一章 簡介 …………………………………………………… 1
第二章 文獻回顧 ……………………………………………… 3
2.1 矽薄膜之分類與應用 ………………………………… 3
2.1.1 矽薄膜之分類 ………………………………… 3
2.1.2 薄膜電晶體 ………………………………… 10
2.1.3 太陽能電池 ………………………………… 14
2.2 複晶矽薄膜的製作方法 ….………………………… 19
2.2.1 準分子雷射退火法 ……………………………. 20
2.2.2 固相結晶法 ……………………………. 25
2.2.3 金屬誘發式結晶法 ……………………………. 28
2.2.4 其他沉積技術 ……………………………. 33
2.3 大面積微波電漿源發展現況 ……………………….. 36
2.4 電漿輔助化學氣相沉積法 ……………………………. 52
第三章 實驗架構與薄膜分析 ………………………………… 58
3.1 偏壓輔助射頻電感耦合式PECVD系統 ………….. 58
3.2 可調式陣列天線大面積微波PECVD系統 ………….. 67
3.3 薄膜製作程序 ………………………………………….. 73
3.4 薄膜材料分析 ………………………………………….. 77
第四章 結果與討論 ………………………………………….. 81
4.1 以RF-PECVD探討複晶矽薄膜之低溫製程 …………... 81
4.1.1 系統分析 ………………………………………….. 84
4.1.2 複晶矽薄膜沉積 ………………………………… 92
4.1.3 RF偏壓能量與RF主能量之疊加效應 ………… 120
4.2 以M-PECVD進行大面積複晶矽薄膜沉積 ………… 126
第五章 結論 …………………………………………………. 148
參考文獻 ……………………………………………………… 150
專有名詞索引 .………………………………………………… 155
著作目錄 ……………………………………………………… 157
參考文獻 [1] 陳玉瓊、洪傳獻,材料與社會 18 (1998) 30.
[2] A. J. Lewis, G.. A. N. Conneil, W. Paul, and J. R. Pawlik, Proc. Int. Conf. Tetrahedrally Bonded Amorphous Semicond.,American Institute of Physics, New York, (1974) 27.
[3] S. Uchikoga and N. Ibaraki, Thin Solid Films 383 (2001) 19.
[4] A. Goetzberger and C. Hebling, Solar Energy Materials & Solar Cells 62 (2000) 1.
[5] H. W. Schock, Appl. Surf. Sci. 92 (1996) 606.
[6] A. V. Shah, R. Platz, and H.Keppner, Solar Energy Materials & Solar Cells 38 (1995) 501.
[7] M. Konagai, Renewable Energy 8 (1996) 410.
[8] Y. Zhao, W. Wang, F. Yun, Y. Xu, X. Liao, Z. Ma, G. Yue, and G. Kong, Solar Energy Materials & Solar Cells 62 (2000) 143.
[9] J. E. Fair, Solid State Technol. (1992) 47.
[10] F. Plais, P. Legagneux, C. Retia, ea al., Microelectronic Engineering 28 (1995) 443.
[11] M. Miyasaka and J. Stoemenos, J. Appl. Phys. 86 (10) (1999) 5556.
[12] J. Jang, J. I. Ryu, S. Y. Yoon and K. H. Lee, vacuum 51 (4) (1998) 769.
[13] K. Shimizu, O. Sugiura, and M. Matsumura, IEEE Trans. Electron Devices 40 (1) (1993) 112.
[14] E. Fujii, K. Senda, F. Emoto, A. Yamamoto, A. Nakamura, Y. Uemoto and G. Kano, IEEE, Transactions on Electron Devices 37 (1) (1990) 121.
[15] A. Kohno, T. Sameshima, N. Sano, M. Sekiya and M. Hara, IEEE Trans. Electron Devices 42 (2) (1995) 251.
[16] Y. Mishima, M. Takei, T. Uematsu, N. Matsumoto, T. Kakehi, U. Wakino, and M. Okabe, J. Appl. Phys. 78 (1) (1995) 217.
[17] M. K. Hatalis, D.N. Kouvatsos, J. H. Kung, A. T. Voutsas, J. Kanicki, Thin Solid Films 338 (1999) 281.
[18] T. Matsuyama, N. Terada, T. Baba, T. Sawada, S. Tsuge, K. Wakisaka, S. Tsuda, J. Non-Cryst. Solids 198-200 (1996) 940.
[19] R. B. Bergmann and J. Krinke, J. Cristal Growth 177 (1997) 191.
[20] R. Rüther, J. Livingstone, and N. Dytlewski, Thin Solid Films 310 (1997) 67.
[21] A. Mimura, N. Konishi, K. Ono, J. Ohwada, Y. Hosokawa, Y. Ono, T. Suzuki, K. Miyata, and H. Kawakami, IEEE Trans. Electron Devices 36 (1989) 351.
[22] G. Liu and Stephen J. Fonash, Appl. Phys. Lett. 62 (20) (1993) 2554.
[23] S. W. Lee and S. K. Joo, IEEE Elcetron Device letters 17(4) (1996) 160.
[24] S. Y. Yoon, J. Y. Oh, C. O. Kim, J. Jang, J. Appl. Phys. 84(11) (1998) 6463.
[25] L. Rezaee, A. Khakifirooz, and S. S. Mohajerzadeh, J. Non-Cryst. Solids 303 (2002) 232.
[26] O. Nast and S. R. Wenham, J. Appl. Phys. 88 (1) (2000) 124.
[27] O. Nast, S. Brehme, S. Pritchart, A. G. Aberle, and S. R. Wenham, Solar Energy Materials & Soalr Cells 65 (2001) 385.
[28] S. Gall, M. Muske, I. Sieber, O. Nast, and W. Fuhs, J. Non-Cryst. Solids 229-302 (2002) 741.
[29] K. H. Kim, S. J. Park, A. Y. Kim, and J. Jang, J. Non-Cryst. Solids 229-302 (2002) 83.
[30] K. C. Park, J. H. Lee, I. H. Song, S. H. Jung, and M. K. Ham, J. Non-Cryst. Solids 299-302 (2002) 1330.
[31] J. H. Ahn, J. N. Lee, Y. C. Kim, B. T. Ahn, Current Appl. Phys. 2 (2002) 135.
[32].H. Y. Kim, Y. S. Kang, Paul S. Lee, and J. Y. Lee, Thin Solid Films 402 (2002) 296.
[33] J. H. Ahn, J. H. Eom, K. H. Yoon, and B. T. Ahn, Solar Energy Materials & Soalr Cells 74 (2002) 315.
[34] S. Ecoffey, D. Bouvet, A. M Ionescu, and P. Fazan, Nanotechnology 13 (2002) 290.
[35] S. Suzuki, M. Kondo and A. Matsuda, Solar Energy Materials & Soalr Cells 74 (2002) 489.
[36] P. P. Ray, N. D. Gupta, P. Chaudhuri, D. L. Williamson, S. Vignoli, and C. Longeaud, J. Non-Cryst. Solids 299-302 (2002) 123.
[37] R. E. I. Schropp, B. Stannowski, A. M. Brockhoff, P. A. T. T. van Veenendaal, and J. K. Rath, Mater. Phys. Mech. 1 (2000) 73.
[38] J. Puigdollers, D. Dosev, A. Orpella, C. Voz, D. Peiro, J. Bertomeu, L. F. Marsal, J. Pallares, J. Andreu, and R. Alcubilla, Mater. Sci. Eng. B 69-70 (2000) 526.
[39] M. Zhu, Y. Cao, X. Guo, J. Liu, M. He, and K. Sun, Solar Energy Materials & Soalr Cells 74 (2002) 315.
[40] J. I. Woo, H. J. Lim and J. Jang, Appl. Phys. Lett. 65 (13) (1994) 1644.
[41] S. K. Kim, K. C. Park and J. Jang, J. Appl. Phys. 77 (10) (1995) 5115.
[42] H. J. Lim, B. Y. Ryu, and J. Jang, Appl. Phys. Lett. 66 (21) (1995) 2888.
[43] M. J. Jung, Y. M. Jung, L. R. Shaginyan and J. G. Han, Thin Solid Films 420-421 (2002) 429.
[44] I. Ganachev and H. Sugai, Plasma Sources Sci. Technol. 11 (2002) A178.
[45] I. Ganachev and H. Sugai, Surf. Coat. Technol. 174-175 (2003) 15.
[46] H. Sugai, I Ghanashev, and M. Nagatsu, Plasma Sources Sci. Technol. 7 (1998) 192.
[47] M. Nagatsu, S. Morita, I. Ghanashev, N. Toyoda, and H. Sugai, J. Phys. D: Appl. Phys. 33 (2000) 1143.
[48] M. Nagatsu, T. Sano, N. Takada, N. Toyoda, M. Tanga, and H. Sugai, Diamond Relat. Mater. 11 (2002) 976.
[49] K. Shimatani, T. Okamoto, and Y. Okamoto, Vacuum 66 (2002) 359.
[50] D. Korzec, F. Werner, R. Winter, and J. Engemann, Plasma Source Sci. Technol. 5 (1996) 216.
[51] D. Korzec, D. Theirich, F. Werner, K. Traub, and J. Engemann, Surf. Coat. Technol. 74-75 (1995) 67.
[52] G. Fedosenko, D. Korzec, A. Schwabedissen, J. Engemann, E. Braca, and J. M. Kenny, Diamond Relat. Mater. 10 (2001) 920.
[53] R. Winter, D. Korzec, and J. Engemann, Surf. Coat. Technol. 93 (1997) 134.
[54] W. Petasch, E. Räuchle, H. Muegge, and K. Muegge, Surf. Coat. Technol. 93 (1997) 112.
[55] M. Kaiser, K. -M. Baumgärtner, A. Schulz, M. Walker, and E. Räuchle, Surf. Coat. Technol. 116-119 (1999) 552.
[56] M. Walker, K. -M. Baumgärtner, J. Feichtinger, M. Kaiser, A. Schulz, and E. Räuchle, Vacuum 57 (2000) 387.
[57] H. Schlemm, A. Mai, S. Roth, D. Roth, K. -M. Baumgärtner, and H. Muegge, Surf. Coat. Technol. 174-175 (2003) 208.
[58] A. Murai, I. Ohya, T. Yasui, H. Tahara, and T. Yoshikawa, Thin Solid Films 281-282 (1996) 146.
[59] D. Roth, B. Rau, S. Roth, J. Mai, and K. -H. Dittrich, Surf. Coat. Technol. 74-75 (1995) 637.
[60] S. Tada, W. Miyazawa, Y. Sakamoto, S. Den, and Y. Hayashi, Thin Solid Films 281-282 (1996) 149.
[61] Mitsuharu Konuma, Film Deposition by Plasma Techniques, Springer-Verlag Berlin Heidelberg New York, 1992.
[62] 陳家豪,國立中央大學光電科學研究所碩士論文,2002年。
[63] 林桔仁,國立中央大學光電科學研究所碩士論文,2004年。
[64] H. Yasuda and T. Hirotus, J. Appl. Polym. Sci. 21 (1977) 3139.
[65] P. L. Tseng and W. J. James, J. Vac. Technol. 13 (1985) 2634.
[66] Brian Chapman, Glow Discharge Processes Sputtering and Plasma Etching, John Wiley & Sons, 1980.
[67] J. Owens, D. Han, B. Yan, J. Yang, K. Lord, and S. Guha, NCPV and Solar Program Review Meeting (2003) 776.
[68] G. Yue, J. Lorentzen, J. Lin, Q. Wang, and D. Han, Appl. Phys. Lett. 75 (1999) 492.
[69] Y. H. Wang, J. Lin, and C. H. A. Huan, Mater. Sci. Eng. B 104 (2003) 80.
指導教授 陳培麗(Pei-Li Chen) 審核日期 2005-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明