博碩士論文 86244001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:3.133.108.241
姓名 張添炮(Tian-Pau Chang)  查詢紙本館藏   畢業系所 地球物理研究所
論文名稱 台灣中西部地區之強震特性
(Strong Motion Characteristics in West-Central Taiwan)
相關論文
★ 臺灣地區地殼速度層析及非均向性研究★ 由短週期表面波頻散資料研究臺灣西南部淺層速度分佈
★ 由雷利波頻散資料推研台灣中央山脈之上部地函速度分佈★ 利用線形地震網探討台灣南部主要構造
★ 由洛夫波頻散資料探討中國大陸岩石圈之三維剪力波速度分佈★ 菲律賓海板塊高解析剪力波速度影像和非均向性研究
★ 由雷利波頻散資料推研台灣海峽之地殼及上部地函構造★ 由表面波資料探討台灣及鄰近區域之地殼速度側向變化
★ 以交叉對比分析地震的時空分佈行態
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 研究顯示不同規模、深度、距離的地震記錄,在同一測站上所求出的反應譜比很類似;H/V方法所作的測站分類和實際地質資料相當吻合。H/V圖形的顯著頻率隨著測站類型從A至B至C逐漸降低,而主放大值則逐漸增加;集集主震的H/V圖形比其它地震偏向低頻,主放大值比其它地震稍小。
在同一地震中,當震源距離接近時,三類測站的反應譜在短週期區相差不大,在長週期區則有較大的差異。當震源距離從近變遠只相差不到30公里的情況下,反應譜的整個外觀並沒有太大的改變。但是在不同地震之間,即使地震規模相當,在相同距離之下所得到的反應譜之差異程度,比同一地震中不同類型測站的差異還大。因此本研究認為在相同距離之下,震源效應對於反應譜的影響程度大於測站效應。
本研究8個地震之平均正規化反應譜和其他研究接近,集集主震長週期能量則有明顯增強。現行設計譜對於8個地震三類測站之規範都相當足夠,唯對於集集主震靠近斷層區水平分量仍有低估的現象。
v/a和d/v參數在不同地震之間的差異很大;地震規模較大、震源位置較淺、震源距離較遠者,這二種參數就愈大。集集主震比其它地震大很多,其最大地表加速度正規化至1g後的最大地表速度和位移,是其他研究的2至3倍。ad/v2參數則比較沒有規律性。
在較遠距離之下,PGA值大致是鬆軟的C類測站大於堅實的B類測站,其垂直(V)與水平分量(H)比值也是C類測站大於B類;PGV不明顯。從全部測站的總平均值來看,規模較大的地震PGA之V/H比值大於規模較小的地震,PGV則不明顯。集集主震的PGA以及PGV之V/H比值不僅比其它地震來得大,而且也超過一般工程界所用的2/3。
最大反應值相對於最大地表振動值的放大倍數,大致都介於2和3之間。集集主震跟其它地震比較起來,也沒甚麼特別之處。
摘要(英) In this paper, the accelerograms recorded by the network of Taiwan Strong Motion Instrumentation Program of the Central Weather Bureau are used to analyze the strong motion characteristics in west-central Taiwan. The data consists of 9 earthquakes with ML>= 5.3 occurred in Taiwan area between 1995 and 1999. Firstly, the station sites are classified into three types by their spectral ratios of horizontal to vertical components(H/V) and geological data, from hardness to softness, called type A, B and C respectively. Then, the strong motion characteristics in regard to source magnitude, depth, hypo-distance and site type are analyzed. In order to highlight the near-fault effect during Chi-Chi mainshock, several kinds of comparisons have been made. The results are summarized below:
The H/V spectral ratios at the specific site calculated from different events are very similar, implying that the H/V ratios are more independent of source magnitude, depth and path at a specific site. Also, the classification results obtained by H/V method are compatible with geological data. For any event, the dominant frequency of H/V spectrum decrease gradually with the site type from A to B to C, but the dominant amplification factor is increased. Of the Chi-Chi mainshock, its dominant frequency and amplification factor are the lowest among the 9 events.
Within the same event, the response spectra for 3 types of sites are very consistent in short period range, however, those have much differences in long period range. The spectral shape has no significant change as the hypo-distance increased from near to far data group is lower than 30 km. Among the different events, however, the spectral shape has much more differences even for the same type of site as well as the same hypo-distance. Therefore, we can conclude that the source effect has more influence on response spectra than the site effect has.
The total means of normalized response spectra calculated from all of 8 events are similar to other study, those from the Chi-Chi mainshock are amplified in long period range. The current seismic design spectrum, anchored at a PGA value of 0.33g, appears to be much adequate for three types of site experiencing the 8 events, and seems to be underestimated, during Chi-Chi mainshock, for site type of A below about 1.2 second.
The ground motion parameters, v/a and d/v, have significant variations among the different events. We obtain the larger values of these two parameters from events which have the greater magnitude, shallower depth, and farther hypo-distance. The Chi-Chi mainshock has the largest values of parameters among the 9 events, its maximum ground velocity and displacement, for a unit ground acceleration(1g), are twice to 3 times of the values given by other studies. However, the parameter ad/v2 has no significant trends among the 9 events, they almost lie between 2 and 4.
For farther hypo-distance, the softer sites of type C not only have the larger values of PGA but also the larger ratios of vertical to horizontal components(V/H). On the viewpoint of total mean of all station sites, the PGA V/H ratios from events with greater magnitude are larger than those with smaller magnitude, but the PGV is not obvious. Of the Chi-Chi mainshock, its V/H ratios for both PGA and PGV are the largest among the 9 events, these ratios also exceed 2/3 which is commonly used in seismic zone A.
The amplification factors of response spectrum related to peak ground motion are almost between 2 and 3, and no exceptions for Chi-Chi mainshock.
關鍵字(中) ★ 反應譜
★ 反應譜比
★ 測站分類
★ 地動參數
★ 設計譜
關鍵字(英) ★ site classification
★ ground motion parameter
★ seismic design spectrum
★ response spectral ratio
★ response spectrum
論文目次 第一章 緒言 ……………………………………………1
1.1 研究動機與目的 ………………………………1
1.2 文獻回顧 ………………………………………2
1.2.1 測站地盤的分析 …………………………3
1.2.2 震源因素的分析 …………………………4
1.2.3 設計譜的分析 ……………………………5
1.2.4 v/a、d/v、ad/v2參數的分析 …………7
1.2.5 反應譜顯著週期的分析 …………………8
1.2.6 反應譜比的分析 …………………………9
1.3 本研究內容 ……………………………………10
第二章 研究區域地質構造 ……………………………11
2.1 台灣地體、地質概況 .………………………11
2.2 區域地質介紹 ………………………………12
第三章 研究方法 ………………………………………15
3.1 反應譜的求法 ……………………………….15
3.2 反應譜的特徵 …………………………………18
第四章 資料收集與處理 ………………………………22
4.1 資料收集 ………………………………………22
4.2 資料處理 ………………………………………22
4.3 測站的分類方式 ………………………………23
第五章 反應譜比與測站分類 ..…………………………29
5.1 反應譜比 ………………………………………29
5.2 本研究的測站分類 ……………………………31
5.3 個別地震的反應譜比 …………………………32
第六章 反應譜的分析 …………………………………48
6.1 震源因素 ..……………………………………48
6.2 距離與測站因素 ………………………………50
第七章 地動參數的分析 ………………………………82
7.1 v/a比值和d/v比值 ……………………………82
7.2 ad/v2比值 ……………………………………84
7.3 顯著週期(dp_a、dp_v) ………………………85
7.4 最大地表運動值(PGA、PGV) …………………85
7.5 放大係數(amp_a、amp_v) …………………86
第八章 討論 ….…………………………………………96
8.1 反應譜比與測站分類 …………………………96
8.2 反應譜圖形 ……………………………………97
8.3 強地動參數 ………………………………………99
第九章 結論 ………………………………………………111
參考文獻 ……………………………………………………113
附錄 A 9個地震在不同距離範圍內之垂直分量平均反應譜 ..122
附錄 B 垂直分量反應譜與設計譜之比較 …………………141
附錄 C 正規化反應譜與設計譜之比較較 …………………148
英文摘要 ………………………………………………………161
作者簡介 ………………………………………………………163
參考文獻 Akkar, S. and P. Gulkan, 2002. A critical examination of near-field
accelerograms from the sea of Marmara region earthquakes. Bull.
Seism. Soc. Am., 92, 428-447.
Anastasiadis, A. N., M. Demostheneous, C. H. Karakostas, N. Klimis,
B. Lekidis, B. Margaris, C. H. Papaioannou, C. Papazachos and N.
Theodulidis, 2000. The Athens(Greece)earthquake of September
7, 1999. Preliminary report on strong motion data and structural
response. Multidisciplinary center for earthquake engineering
research. Institute of Engineering Seismology and Earthquake
Engineering, Thessaloniki, Greece.
Atkinson, G. M., 1993. Notes on ground motion parameters for eastern
north America. Duration and H/V ratio. Bull. Seism. Soc. Am., 83,
587-596.
Bakir, B. S., H. Sucuoglu and T. Yilmaz, 2002. An overview of local
site effects and the associated building damage in Adapazari during
the 17 August 1999 Izmit earthquake. Bull. Seism. Soc. Am., 92,
509-526.
Bardet, J. P. and C. Davis, 1996. Engineering observations on ground
motion at the Van Norman Complex after the 1994 Northridge
earthquake. Bull. Seism. Soc. Am., 86, S333-S349.
Boore, D. M., 2001a. Comparisons of ground motions from the 1999
Chi-Chi earthquake with empirical predictions largely based on
data from California. Bull. Seism. Soc. Am., 91, 1212-1217.
Boore, D. M., 2001b. Effect of baseline corrections on displacements
and response spectra for several recordings of the 1999 Chi-Chi,
Taiwan, earthquake. Bull. Seism. Soc. Am., 91, 1199-1211.
Bozorgnia, Y., M. Niazi and K. W. Campbell, 1995. Characteristics of
free-field vertical ground motion during the Northridge earthquake.
Earthquake spectra, 11, 515-525.
Chai, J. F., C. H. Loh and C. Y. Chen, 2000. Consideration of the near-
fault effect on seismic design code for sites near the Chelungpu
fault. Jour. Chinese Inst. Eng., 23, 447-454.
Chang, S. W., J. D. Bray and R. B. Seed, 1996. Engineering implica-
tions of ground motions from the Northridge earthquake. Bull.
Seism. Soc. Am., 86, S270-S288.
Chang, T. P. and G. K. Yu, 2002. A study of strong motion response
spectrum in west-central Taiwan. TAO, 13, 135-152.
Dalguer, L. A., K. Irikura, J. D. Riera and H. C. Chiu, 2001. The impor-
tance of the dynamic source effects on strong ground motion
during the 1999 Chi-Chi, Taiwan, earthquake. Brief interpretation
of the damage distribution on buildings. Bull. Seism. Soc. Am.., 91,
1112-1127.
Dravinski, M., G. Ding and K. L. Wen, 1996. Analysis of spectral ratios
for estimating ground motion in deep basins. Bull. Seism. Soc. Am.,
86, 646-654.
Dunbar, W. S. and R. G. Charlwood, 1991. Empirical methods for the
prediction of response spectra. Earthquake Spectra, 7, 333-353.
Field, E. H. and K. H. Jacob, 1993. The theoretic response of sedimen-
tary layers to ambient seismic noise. Geophys. Res. Lett., 20, 2925-
2928.
Field, E. H., A. C. Clement, K. H. Jacob, V. Aharonian, S. E. Hough, P.
A. Friberg, T. O. Babaian, S. S. Karapetian, S. M. Hovanessian and
H. A. Abramian, 1995. Earthquake site response study in Giumri
(formerly Leninakan), Armenia using ambient noise observations.
Bull. Seism. Soc. Am., 85, 349-353.
Huang, C. T. and S. S. Chen, 2000. Near-field characteristics and
engineering implications of the 1999 Chi-Chi earthquake. Earthq.
Eng. Eng. Seis., 2, 23-41.
Huang, H. C. and Y. S. Tseng, 2002. Characteristics of soil liquefaction
using H/V of microtremors in Yuan-lin area, Taiwan. TAO, 13, 325
-338.
Huang, N. E., C. C. Chern, K. Huang, L. W. Salvino, S. R. Long and K.
L. Fan, 2001. A new spectral representation of earthquake data:
Hilbert spectral analysis of station TCU129, Chi-Chi, Taiwan, 21
September 1999. Bull. Seism. Soc. Am., 91, 1310-1338.
Hudson, D. E., 1979. “Reading and interpreting strong motion accelero-
grams”, Earthquake Engineering Research Institute, Berkeley,
California.
Kao, H., Y. H. Liu and W. P. Chen, 2002. Source parameters of regional
earthquakes in Taiwan: 1999-2000 including the Chi-Chi earth-
quake sequence. TAO, 13, 279-298.
Lam, N., J. Wilson and A. Chandler, 2000. Response spectrum model-
ing for rock sites in low and moderate seismicity regions com-
bining velocity, displacement and acceleration predictions. Earth-
quake Eng. Struct. Dyn., 29, 1491-1525.
Lee, C. T., C. T. Cheng, C. W. Liao and Y. B. Tsai, 2001. Site classifi-
cation of Taiwan free-field strong-motion stations. Bull. Seism.
Soc. Am., 91, 1283-1297.
Lermo, J. and F. J. Chavez-Garcia, 1993. Site effect evaluation using
spectral ratios with only one station. Bull. Seism. Soc. Am., 83,
1574-1594.
Liu, K. S., T. C. Shin and Y. B. Tsai, 1999. A free-field strong motion
network in Taiwan: TSMIP. TAO, 10, 377-396.
Loh, C. H., Y. T. Yeh and W. Y. Jean, 1991. Development of site-
dependent design spectra and a seismic risk map for the Taiwan
area. Jour. Chinese Inst. Eng., 14, 437-446.
Loh, C. H., C. S. Hwang and W. Y Jean, 1998. Seismic demand based
on damage control model---considering basin effect and source
effect. Soil Dynamics and Earthquake Engineering, 17, 335-345.
Mohraz, B., 1976. A study of earthquake response spectra for different
geological Conditions. Bull. Seis. Soc. Am., 66, 915-935.
Nakamura, Y., 1989. A method for dynamic characteristics estimation of
subsurface using microtremor on the ground surface. QR of RTRI,
30, 25-33.
Newmark, N. M., J. A. Blume and K. K. Kapur, 1973. Seismic design
spectra for nuclear power plants. Jour. Power Div. ASCE, 99, PO2,
287-303.
Niazi, M. and Y. Bozorgnia, 1992. Behavior of near-source vertical and
horizontal response spectra at SMART-1, Taiwan. Earthquake Eng
Struct. Dyn., 21, 37-50.
Rassem, M., A. Ghobarah and A. C. Heidebrecht, 1997. Engineering
perspective for the seismic site response of alluvial valleys.
Earthquake Eng Struct. Dyn., 26, 477-493.
Romo, M. P., H. B. Seed, J. I. Sun, J. Lysmer, 1988. The Mexico
earthquake of September 19, 1985 ---Relationships between soil
conditions and earthquake ground motions. Earthquake Spectra, 4,
687-729.
Saffarini, H. S. and H. Kabalawi, 1999. Design response spectra for
Aqaba city- Jordan. Earthquake Eng. Struct. Dyn., 28, 725-739.
Seed, H. B. and I. M. Idriss, 1969. Influence of soil conditions on
ground motions during earthquakes. Jour. Soil Mech. Found. Div.
ASCE, 95, SM1, proc. 6347.
Seed, H. B., C. Ugas and J. Lysmer,1976a. Site-dependent spectra for
earthquake- resistant design. Bull. Seis. Soc. Am., 66, 221-243.
Seed, H. B., R. Murarka, J. Lysmer and I.. M. Idriss,1976b. Relation-
ships of maximum acceleration, maximum velocity, distance from
source, and local site conditions for moderately strong earthquakes.
Bull. Seism. Soc. Am., 66, 1323-1342.
Shakal, A. F., M. J. Huang and R. B. Darragh, 1996. Interpretation of
significant ground-response and structure strong motions recorded
during the 1994 Northridge earthquake. Bull. Seism. Soc. Am., 86,
S231-S246.
Shin, T. C., 2000. Chi-Chi earthquake-seismology, Proceedings,
International workshop on the September 21, 1999 Chi-Chi
earthquake, 1-14.
Shin, T. C. and T. L. Teng, 2001. An overview of the 1999 Chi-Chi,
Taiwan, earthquake. Bull. Seism. Soc. Am., 91, 895-913.
Singh, J. P., 1985. Earthquake ground motions: Implications for
designing structures and reconciling structural damage. Earthquake
Spectra, 1, 239-270.
Theodulidis, N., P. Y. Bard, R. Archuleta and M. Bouchon, 1996.
Horizontal-to-vertical spectral ratio and geological conditions: The
case of Garner Valley downhole array in southern California. Bull.
Seism. Soc. Am., 86, 306-319.
Tsai, C. C., Y. T. Yeh, K. L. Wen, S. N. Cheng and M. H. Kao, 1986.
The Hualien earthquake of May 20, 1986:strong ground motion
data and response spectra. Bull. Inst. Earth Sciences, Academia
Sinica, 6, 29-64, December.
Tsai, Y. B. and M. W. Huang, 2000. Strong ground motion character-
istics of the Chi-Chi, Taiwan earthquake of September 21, 1999.
Earthquake Eng. Eng. Seism., 2, 1-21.
Tsai, Y. B., T. M. Yu, H. L. Chao and C. P. Lee, 2001. Spatial distribu-
tion and age dependence of human-fatality rates from the Chi-Chi,
Taiwan, earthquake of 21 September 1999. Bull. Seism. Soc. Am.,
91, 1298-1309.
Wang, G. Q., X. Y. Zhou, Z. J. Ma and P. Z. Zhang, 2001. A preliminary
study on the randomness of response spectra of the 1999 Chi-Chi,
Taiwan, earthquake. Bull. Seism. Soc. Am., 91, 1358-1369.
Wang, J. H., C. Y. Wang, C. Y. Huang, T. C. Shin, S. B. Yu, S. F. Hsieh
and K. L. Wen, 2000. Program for earthquake and active-fault
researches, Proceedings, International workshop on the September
21, 1999 Chi-Chi earthquake. 185-192.
Wu, F. T. and R. J. Rau, 1998. Seismotectonics and identification of
potential seismic source zones in Taiwan. TAO, 9, 739-754.
Wu, Y. M., T. C. Shin and C. H. Chang, 2001. Near real-time mapping
of peak ground acceleration and peak ground velocity following a
strong earthquake. Bull. Seism. Soc. Am., 91, 1218-1228.
Yamazaki, F. and M. A. Ansary, 1997. Horizontal-to-vertical spectrum
ratio of earthquake ground motion for site characterization. Earth-
quake Eng. Struct. Dyn., 26, 671-689.
Zare, M., P. Y. Bard and M. Ghafory-Ashtiany, 1999. Site character-
izations for the Iranian strong motion network. Soil Dyn. Earth-
quake Eng., 18, 101-123.
葉超雄、翁作新、杜振宗、羅俊雄,1981。台北市區微動顯著週期
之量測與分析。國立台灣大學地震工程研究中心報告,CEER,
R70-01,六月。
宋和燦,1986。各種不同地盤彈性反應譜與基地係數之研究。國立
台灣大學土木工程研究所碩士論文。
吳金郎,1987。台灣地區地震設計反應譜之研究。國立中央大學
土木工程研究所碩士論文。
蔡主權、葉永田、鄭世楠,1987。南化水庫設計反應譜及人造合
成地震之研究。南化水庫計畫檢討報告,NO. 16,中央研究院
地球科學研究所,六月。
蔡主權、蔡益超,1987。台北都會區捷運系統耐震設計反應譜之
研擬。國立台灣大學地震工程研究中心報告,CEER,R76-22,
十月。
蔡益超,1987。從七十五年十一月十五日地震台北市強震資料檢討
建築技術規則之震力係數。結構工程,第2卷,第4期,第13-20
頁。
溫國樑,1988。羅東地區之強地動特性。國立中央大學地球物理
研究所博士論文。
林昌明,1990。以Newmark-Hall方法探討嘉南地區之彈性及非彈
性設計震譜。國立成功大學建築研究所碩士論文。
許金城,1990。台灣都會區土層動態週期之研究與現行耐震規範之
檢討。結構工程,第5卷,第3期,第59-75頁。
王千翠,1991。羅東地區加速度反應譜特性。國立中央大學地球
物理研究所碩士論文。
田堯彰、吳俊龍,1992。台灣地區地震設計反應譜之研究。萬能
學報,第14期,第205-220頁。
洪李陵、張建輝,1993。高雄市之地震等危害度反應譜。中國土木
水利工程學刊,第5卷,第2期,第133-142頁。
何春蓀,1994。台灣地質概論。經濟部中央地質調查所出版。
陳立言,1994。台北盆地土層放大效應之研究。國立台灣大學土木
工程研究所博士論文。
郭鎧紋,1994。中央氣象局強地動觀測網之地質特性研究(三)—
嘉南地區,中央氣象局八十三年度研究報告,第CW83-1A-12。
吳坤瑞,1995。地震時結構物之反應。三聯技術雜誌,第36期,
第20-33頁。
陳立言、張偉哲,1995。台灣地區高速鐵路設計地震之研究。高苑
學報,第4期,第189-195頁。
羅俊雄、馬明紀,1995。日本兵庫縣南部地震與台灣地區強地動特
性之比較及討論。結構工程,第10卷,第2期,第83-92頁。
李增欽、鄭一俊、鄭玉旭,1996。建築結構物設計地震力之探討---
以苗票明德及僑成國小工址反應震譜為例。聯合學報,第14
期,第351-367頁。
林昭儀,1997。以反應譜研究台北盆地之強地動場址效應。國立
中央大學地球物理研究所碩士論文。
陳坤杰,1997。以反應譜研究宜蘭平原之強地動場址效應。國立
中央大學地球物理研究所碩士論文。
葉旭原、張嘉祥,1997。斷層附近學校建築耐震安全研究-----新化
斷層沿線七所學校之耐震規劃評估。中華民國建築學會第十屆
建築研究成果發表會論文集,第97~100頁。
施博仁,1998。台北盆地強地動反應之微分區。國立台灣大學土木
工程研究所碩士論文。
蔡岳良,1998。台北盆地地震反應譜分佈研究。國立台灣科技大學
營建技術研究所碩士論文。
羅俊雄、辛在勤,1998。嘉義瑞里地震強地動特性。結構工程,第
13卷,第3期,第5-22頁。
李政寬、羅俊雄、辛在勤,1999。集集地震之地震觀測及強地動分
析。結構工程,第14卷,第3期,第5-28頁。
黃文紀,1999。嘉南地區之地震源特性。國立中央大學地球物理
研究所博士論文。
溫國樑、羅俊雄、彭翰毅、劉良方,1999。集集地震之強地動特性。
結構工程,第14卷,第3期,第29-37頁。
經濟部中央地質調查所,1999。台灣地質圖。
楊昌棋,1999。以反應譜研究嘉南地區之強地動場址效應。國立
中央大學地球物理研究所碩士論文。
蔡義本、黃明偉、趙曉玲,1999。1999年9月21日台灣集集大地
震的震源與強地動特性初步分析結果。中國土木水利工程學刊
,第26卷,第3期,第5-18頁。
羅俊雄,1999。921集集大地震強地動行為與震害概談。中國土木
水利工程學刊,第26卷,第3期,第19-35頁。
王乾盈,2000。集集地震之可能孕震構造。國科會集集地震研究
系列研討會,孕震構造及活斷層調查,第1-16頁。
李位育,2000。結構耐震設計概論,台北市文笙書局。
張添炮、余貴坤,2000。台灣中部地區之反應譜特性研究。第八屆
台灣地區地球物理研討會論文集,第235-244頁。
黃慶東,2000。近斷層地震地動特性與震譜特性之探討。結構工程,
第15卷,第2期,第91-113頁。
陳希舜、鄭丁興,2000a。台灣地區考慮地盤影響之強震特性。中
國土木水利工程學刊,第12卷,第3期,第445-453頁。
陳希舜、鄭丁興,2000b。台灣地區考慮地盤影響之設計震譜。中
華民國建築學會「建築學報」第32期,第13-28頁。
陳希舜、王富貞、徐偉朝,2000。台北盆地之基本振動週期與設計
震譜。中華民國建築學會「建築學報」第33期,第103-118頁。
古美鈴,2001。高屏地區場址效應之探討。國立中央大學地球物理
研究所碩士論文。
葉俊岑,2001。利用單站頻譜比法探討集集地震造成之土壤非線性
反應。國立中央大學地球物理研究所碩士論文。
張添炮、余貴坤,2002。台灣中西部地區反應譜顯著週期之研究。
中央氣象局氣象學報,第44卷,第1期,第51-63頁。
張添炮、余貴坤、劉芳嬌,2003。台灣中西部地區反應譜比之研究。
中央氣象局氣象學報,第45卷,第2期(印行中)。
指導教授 余貴坤(Guey-Kuen Yu) 審核日期 2003-5-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明