博碩士論文 86244004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:5 、訪客IP:18.207.240.230
姓名 鄭錦桐(Chin-Tung Cheng)  查詢紙本館藏   畢業系所 地球物理研究所
論文名稱 台灣地區地震危害度的不確定性分析與參數拆解
(Uncertainty Analysis and Deaggregation of Seismic Hazard in Taiwan)
相關論文
★ 利用S波與尾波探求蘭陽平原局部場址效應★ 集集地震誘發之山崩
★ 以地表位移量推算921地震時車籠埔斷層之錯動參數★ 利用921地震序列之強地動資料對台灣強地動衰減模式與反應譜速估之研究
★ 1999年集集地震序列強地動峰值隨方位角變動及以偏極化分析輔助地震定位方法之研究★ 九二一集集大地震序列各地累積絕對速度值(CAV)之研究
★ 以反應譜比值法推求地震時結構物振動行為之研究★ 紅河斷裂帶地震活動以及東南亞地殼與上部地函構造之研究
★ 台灣小規模地震再發統計模式參數研究★ 台灣ShakeMap震度之研究-以九二一集集地震序列為例
★ 斷層錯動、地殼變位及強地動與地震災害相關性之研究: 以1935年及1999年台灣中部兩次地震為例★ 使用震源機制逆推台灣地區應力分區狀況
★ 利用傅氏振幅譜比法分析全台灣強震站的場址★ 以Gamma Model對台灣餘震叢集現象之研究
★ 台灣西南部GPS資造時間序列分析與地殼變形模式研究★ 機率式地震誘發山崩危害度分析–以國姓地區為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 921集集大地震之後,經研究發現國內過去提出的機率式地震危害度分析(probabilistic seismic hazard analysis, PSHA)悉數低估了中部地區的危害度,也突顯出唯有考慮活斷層與選擇適當的強地動衰減式,才能獲致合理的PSHA結果。因此本研究重新檢討台灣地區的震源模式、震源參數與強地動衰減式,並以邏輯樹方法完成台灣地區的PSHA,進一步瞭解危害度結果的不確定性來源,同時也透過參數拆解分析瞭解貢獻危害度的主要震源特性。本研究的震源模式除了傳統的區域震源外,另外以三維面震源模型模擬活斷層與隱沒帶板塊震源。在地震規模機率分布的推估方面,採用台灣地區1900年至1999年地震矩規模(MW)的獨立主震目錄,建立各區域震源的截切指數模式;並以各活斷層的滑移速率(S)資料建構特徵地震模式。在強地動衰減式方面,首先將震源分為地殼內部與隱沒帶兩類,並區分不同類地盤的測站,考慮斷層上盤及下盤測站的強地動差異,採用測站距斷層面最短距離,並採用具近場規模飽和效應的Campbell衰減模式進行迴歸分析,獲得八組不同的強地動反應譜衰減式及資料之標準差。
本研究完成之PGA與0.2秒及1.0秒反應譜加速度的危害度等值圖,顯示斷層的活動度與危害度關係密切,尤其在斷層上盤幾何中心處危害度較高。中央山脈是危害度的低區之一,明顯分隔其東西兩側的花東縱谷與西部麓山帶的危害度高區,台灣島內危害度最低的區域在桃園的西北沿海及高雄外海一帶。另外,將本研究的PSHA結果除以僅考慮區域震源的PSHA結果,發現比值的高區分佈於斷層上盤,尤其在背景地震發生率特別低的中部地區以及新竹-苗栗一帶。
由於各場址的鄰近震源參數組合不同,所以影響各場址PSHA不確定性的主要因素不相同。因此特別針對邏輯樹分支有變化的參數,探討參數變化對PSHA不確定性的影響程度,結果發現台灣地區的S影響不確定性最高,其次是mu;斷層震源的特徵地震模式b值不影響不確定性,但是對於遠離斷層震源且使用截切指數模式的區域震源而言,b值影響相當明顯;斷層傾角影響PSHA不確定性,主要是位於斷層傾斜面末端的地表投影處。
台灣都會地區的PSHA結果經震源拆解後,發現僅採用區域震源不能正確反應出長再現週期的危害度,以475年再現週期為例,唯有考慮斷層震源才能使近場的PGA危害度超過0.4g以上。北部區域經震源拆解後發現,除鄰近活斷層的區域外,其餘區域受隱沒帶震源影響不容忽視,其影響範圍可以遍及桃園的西北外海區域,建議未來北部區域在地震防災上,需要加強注意隱沒帶震源的威脅。
本研究PSHA成果已合理反應出斷層震源的危害度,可進一步提供建築法規中耐震設計相關規定的參考。經過不確定分析後,提供未來地球科學界與地震工程界在降低PSHA不確定性的研究上一個明確的方向。各都會地區的參數拆解成果,可作為地震防災上進行地震境況模擬的候選震源參考。
摘要(英) Before the occurrence of the September 21, 1999, Chi-Chi Taiwan earthquake, the previous studies of probabilistic seismic hazard analysis (PSHA) by different agencies and authors totally underestimated the seismic hazard in Central Taiwan. The importance to incorporate fault sources and closest distance to fault in developing the ground-motion attenuation relationships and in PSHA. Using logic tree to model parameters at nodes and weightings at branches in PSHA could obtain the uncertainty of PSHA influenced by parameters. Further, we could understand the characteristic of sources in vicinities by deaggregating hazard contributed from different magnitude and distance bins.
We adopt 3-D plate source to model fault planes and subduction zone plates except regional sources. Truncated-Exponential model developed by mainshock catalog in MW from 1900 to 1999 was used to describe the magnitude distribution of regional sources; Characteristic-Earthquake model developed by fault slip rate was used to describe the magnitude distribution of active fault and subduction interface sources. The ground-motion level of subduction plate sources are always higher than crustal sources. Hence, it is in need of adopting suitable attenuation relationship for each source in PSHA, especially the attenuation relationship of curustal source including the ground-motion data of Chi-Chi earthquake sequence, and which reveals the hanging-wall effect and site condition for specific site.
According to the iso-seismic hazard map of PGA, 0.2sec and 1.0sec spectral acceleration, there are obviously correlation between the hazard level and the activity of fault, especially on the center of the hanging wall. the highest hazard level can be found in eastern longitudinal valley and western foothills to coast plain, separated by the central range in low hazard level. Furthermore, the hazard level considering faults activity divided by regional sources shows that the prominent ratio always distribute on hanging wall, especially on the low background seismicity region in the past, such as TaiChung and HsinChu-MiaLi region. The iso-seismic hazard map could be referenced by the Taiwan Building Code in the future.
For specific site, the major parameters that influence uncertainty of PSHA are different because of various combinations of source parameters in vicinities. After uncertainty analysis by logic tree, we could understand the variation of parameter and how it influences the PSHA result. The most important one is the slip rate of fault, the second one is mu; the b-value of Characteristic- Earthquake model influence the uncertainty unapparent, but Truncated-Exponential model of regional sources which far away from active fault influence the uncertainty conspicuous. The variation of fault dip also influence uncertainty of PSHA obviously at the end of down-dip fault plane projection surface. The result of PSHA uncertainty analysis could help geo-scientists and earthquake engineers to estimate and judge the parameters more efficiently.
From the deaggregation of PSHA in several metropolis of Taiwan, results show the hazard contributed from each distance and magnitude bin by different return period. The deaggregation could provide information for hazard mitigation while choosing scenario earthquakes. After considering fault activity in PSHA, the PGA level of near-field always exceed 0.4g in 475yr return period, however, it is impossible to reach the proper hazard level without fault source in PSHA especially in long return period. The northern Taiwan is threatened not only an active fault in vicinity, but also subduction plate sources more than what we have known before. Therefore we should pay more attention on subduction zone sources in hazard mitigation of northern Taiwan in the future.
關鍵字(中) ★ 強地動衰減式
★ 地震防災
★ 參數拆解
★ 不確定性分析
★ 斷層滑移速率
★ 機率式地震危害度分析
★ 活斷層
★ 地理資訊系統
★ 建築法規
關鍵字(英) ★ Probabilistic Seismic Hazard Analysis (PSHA)
★ slip rate
★ uncertainty analysis
★ deaggregation
★ seismic hazard mitigation
★ Building Code
★ Geographic Information system(GIS)
★ active fault
★ Ground motion attenuation relationship
論文目次 摘要 i
誌謝 ii
目錄 iii
圖目 vii
表目 xii
第一章 緒論
1.1研究動機與目的 1
1.2 文獻回顧 2
1.3本文研究流程與範疇 5
第二章 PSHA相關理論
2.1 PSHA理論簡介 8
2.2震源分類與震源模式 8
2.2.1震源分類 8
2.2.2震源模式 9
2.3地震規模的機率分布 12
2.3.1 斷層滑移速率推估 12
2.3.2 截切指數模式 15
2.3.3 特徵地震模式 17
2.4 強地動衰減式超越的條件機率 19
2.5邏輯樹方法-處理參數的不確定性 21
2.6參數拆解分析 26
第三章 台灣震源劃分與參數分析
3.1台灣地體構造簡介 29
3.2區域震源 33
3.2.1 簡介 33
3.2.2 淺層區域震源劃分 33
3.2.3 深層區域震源劃分 38
3.2.4 震源特性參數分析 38
3.3活斷層震源 43
3.3.1 簡介 43
3.3.2 斷層機制與幾何形貌 44
3.3.3 活斷層滑移速率推估 47
3.3.4最大可能地震推估 53
3.4隱沒帶震源 54
3.4.1簡介 54
3.4.2 隱沒帶介面震源地震參數分析 54
3.4.3 隱沒帶內部震源地震參數分析 56
第四章 台灣地區PSHA之不確定性分析
4.1概述 61
4.2邏輯樹架構 61
4.2.1震源模式 61
4.2.2強地動衰減式 63
4.2.3震源深度分析 63
4.2.4震源規模分布模式 64
4.2.5斷層幾何 65
4.3 PSHA分析成果 65
4.4 不確定性分析成果 67
第五章 台灣地區PSHA成果之參數拆解
5.1概述 81
5.2規模參數拆解 81
5.3距離參數拆解 83
5.4衰減式正規化標準差參數拆解 85
5.5主要震源貢獻的拆解 87
5.6各主要都會地區的PSHA參數拆解 87
第六章 討論
6.1 資料處理 106
6.1.1地震目錄 106
6.1.2震源特性參數 107
6.1.3強地動衰減式 110
6.2與國內PSHA研究比較 111
6.3與國外PSHA研究比較 116
6.4 PSHA結果與建築法規 117
6.5邏輯樹與不確定性分析 122
6.6 PSHA參數拆解 123
第七章 結論與建議
7.1結論 126
7.2建議 127
參考文獻 129
附錄A 台灣地區地震目錄分析與統計檢定 142
附錄B 台灣地區區域震源與隱沒帶板塊內部型震源的截切指數模式 163
附錄C 台灣地區活斷層與隱沒帶板塊介面型震源的特徵地震模式 172
附錄D 台灣地區震源的地震次數與深度分佈 181
附錄E 地殼震源的強地動衰減式迴歸 189
附錄F PSHA的敏感度分析 200
附錄圖目 221
附錄表目 225
英文摘要 226
作者簡介 227
參考文獻 日本建設省河川局,1977. 多目的ダムの建設,第四卷, 1-40。
吳相儀,2000. 台灣地區中大型地震震源參數分析,國立中央大學地球物理研究所碩士論文,台灣中壢,119頁。
李錫堤,1986. 大地應力分析與弧陸碰撞對於台灣北部古應力場變遷之影響,國立中央大學地球物理研究所博士論文,台灣台北,156頁。
李錫堤,1991. 地震危害機率分析方法之檢討,工程地質技術應用研討會Ⅲ 論文集,第5-1~5-19頁。
李錫堤,1993. 活斷層工程評估新發展,地工技術, 44, 5-18.
李錫堤,康耿豪,鄭錦桐,廖啟雯 ,2000a. 921集集大地震之地表破裂及地盤變形現象,地工技術,81, 5-16。
李錫堤,鄭錦桐,廖啟雯,廖卿妃 ,2000b. 車籠埔斷層開挖的初步成果,第八屆台灣地區地球物理研討會暨八十九年度中國地球物理學會年會論文集, 642-648。
林柏伸,2002. 台灣地區東北部地區隱沒帶強地動衰減式之研究,國立中央大學應用地質研究所碩士論文,台灣中壢。
林柏伸,鄭錦桐,李錫堤,2002. 台灣地區隱沒帶震源與地殼震源強地動反應譜衰減式,第九屆台灣地區地球物理研討會暨九十年度中國地球物理學會年會論文集,24-31。
林啟文,張徽正,盧詩丁,石同生,黃文正,2000. 台灣活動斷層概論第二版,五十萬分之一台灣活動斷層分佈圖說明書,經濟部中央地質調查所特刊,13,122頁。
茅聲濤,1978. 地震之工程危害度研究及其應用,中國土木水利學刊,5, 35-40.
徐明同,1983. 明清時代破壞性大地震規模及震度之評估,氣象學報季刊,29,1-18。
康耿豪,林泉嘉,紀立民,鄭錦桐,李錫堤,2000. 921集集大地震的斷層分段及位移量分佈特性,中國地質學會八十九年年會暨學術研討會,141-143。
許文科,2000. 整合性多目標地震風險評估系統之建立,國立中央大學土木工程學研究所博士論文,175頁。
郭學文,1991. 地震危害度新模式之研究,國立成功大學土木工程研究所碩士論文,台灣台南,104頁。
章在墉,1996. 地震危險性分析及其應用,同濟大學出版社,上海市,348頁。
黃正耀,1995. 台灣地區強地動特性及地震危害度參數之評估,國立中央大學地球物理研究所碩士論文,台灣中壢,109頁。
葉永田,鄭世楠,辛在勤,何美儀 ,1995. 台灣數個地震目錄定位與規模評III,交通部中央氣象局地震測報中心技術報告彙編,11, 243-264.
劉坤松,1999. 台灣地區強震地動衰減模式之研究,國立中央大學地球物理研究所博士論文,240頁。
蔡義本,王乾盈,李錫堤,許茂雄, 劉坤松,1998. 台灣區學校附近活斷層普查及防震對策研究計畫,台灣省政府教育廳研究報告,278頁。
蔡義本,溫國樑,陳桂寶,郭倢慇 ,2000. 台灣地震目錄的統整與強地動衰減模式發展, 八十七年度防災型國家科技計畫-整合性專案研究報告,79頁。
鄭世楠,葉永田 ,1989. 西元1604年至1988年台灣地區地震目錄,中央研究院地球科學研究所報告,IES-R-661,255頁。
鄭錦桐,1997. 台灣地震危害度分析-使用新的震源分區,國立中央大學地球物理研究所碩士論文,台灣中壢,131頁。
鄭錦桐,李錫堤,蔡義本 ,1998. 利用地理資訊系統輔助地震危害度分析,地工技術,69, 41-50.
鄭錦桐,李錫堤,蔡義本,2000a. 考慮斷層活動性的地震危害度分析,第八屆台灣地區地球物理研討會暨八十九年度中國地球物理學會年會論文集,649-653。
鄭錦桐,李錫堤,蔡義本,2000b. 集集大地震斷層破裂面幾何形貌及強地動振幅衰減模式,中國地質學會八十九年年會, 21-23。
鮑福星,1992. 地震危害度分析之不確定性研究,國立台灣大學土木工程研究所碩士論文,台灣台北,101頁。
簡枝益,2001. 地震危害度分析及機率地震境況模擬-考慮斷層滑移速率,國立台灣大學土木工程學研究所碩士論文,台灣台北,54頁。
羅俊雄,溫國樑,簡文郁,柴駿甫,鄧崇任,饒瑞鈞,2000. 考慮區域近斷層效應及 均佈危害度之設計地震力需求,內政部建築研究所,61頁。
羅俊雄,葉超雄,葉永田,蔡益超 ,1991. 台灣地區地震危害度分析及其研究方法研究,財團法人中興工程科技研究發展基金會,154頁。
羅俊雄,簡文郁 ,1993. 台灣地區地震危害度分析—程式建立,中央氣象局計畫,CEER R82-06,69頁。
Abe, K. and Kanamori, H. 1979. Temporal variation of the activity of intermediate and deep focus earthquakes: J. Geophys. Res., 84, 3589-3595.
Abrahamson, N. A. and Shedlock, K. M., 1997. Overview, Seism: Res. Lett. 68, 9-23.
Abrahamson, N. A. and Silva, W. J., 1997. Empirical response spectral attenuation relations for shallow crustal earthquakes: Seism. Res. Lett., 68, 94-127.
Abrahamson, N. A. and W. J. Silva , 1997. Empirical response spectral attenuation relations for shallow crustal earthquakes, Seism. Res. Lett. 68, 1, 94-127.
Abrahamson, N., Somerville, P. G., 1996. Effects of the hanging wall and footwall on ground motions recorded during the Northridge earthquake, Bull. Seism. Soc. Am., 86, 93-99.
Algermissen, S. T., and Perkins, D. M., 1976, A probabilistic estimate of maximum acceleration in rock in the contiguous United States, U. S. Geological Survey Open-File Report 76-0416, 45.
Anagnos, T., and Kiremidjian, A. S., 1988. A review of earthquake occurrence models for seismic hazard analysis, Probabilistic Engineering Mechanics, 3, 3-11.
Anderson, J. G., 1979. Estimating the Seismicity From Geological Structure for Seismic-Risk Studies, Bull. Seism. Soc. Am., 69, 135-158.
Anderson, J. G., and Luco, J. E., 1983. Consequences of Slip Rate Constraints on Earthquake Occurrence Relations, Bull. Seism. Soc. Am., 73, 471-496.
Andrzej, K., 1988. Maximum Likelihood of Gutenberg-Richter b Parameter for Uncertain Magnitude Values, PAGEPPH, 127, 573-579.
Ang, A. H-S , and Tang, W. H., 1975. Probability concepts in engineering planning and design. Vol. 1, Basic Principles, Wiley, N. Y.
Angelier, J., Chu, H. T., Lee, J. C., and Hu, J. C., 2000. Active faulting and earthquake hazard: The case study of the Chihshang Fault, Taiwan, Journal of Geodynamics, 29, 151-185.
Arabasz, W. J., and Robinson, R., 1976. Microseismicity and geologic structure in the northern south island, New Zealand, Journal of Geology and Geophysics, 19, 569-601.
Bazzurro, P. and Cornell, C. A., 1999. Disaggregation of seismic hazard, Bull. Seism. Soc. Am., 89, 501-520.
Bazzurro, P. and Cornell, C. A., 1999. Disaggregation of seismic hazard, Bull. Seism. Soc. Am. , 89, 501-520.
Bender, B., 1983. Maximum likelihood estimation of b values for magnitude grouped data, Bull. Seism. Soc. Am., 73, 831-851.
Bender, B., 1984. Incorporating acceleration variability into seismic hazard analysis, Bull. Seism. Soc. Am., 74, 1451-1462.
Bender, B., and Campbell, K. W., 1989. A note on the selection of minimum magnitude for use in seismic hazard analysis, Bull. Seism. Soc. Am., 79, 199-204.
Berrill, J. B., and Davis, R. O., 1980. Maximum entropy and the magnitude distribution, Bull. Seism. Soc. Am., 70, 1823-1831.
Big, C. C., 1972. Dual-trench structure in the Taiwan-Luzon region, Proc. Geol. Soc. China, 15, 66 – 75.
Billinger, D.R., 1982. Some bounds for seismic risk, Bull. Seism. Soc. Am., 72, 1403-1410.
Bollina, M. G., 1970. Surface faulting and related effects: in Earthquake Engineering, R. L. Wiegel, Editor, Prentice-Hall, Englewood Cliffs, New Jersey, 47-74.
Boore, D. M., Joyner, W. B., and Fumal, T. E., 1997. Equations for estimating horizontal response spectra and peak acceleration from western north American earthquakes: a summary of recent work, Seism. Res. Lett. 68, 128-153.
Brillinger, D. R., and Preisler, H. K., 1985. Further analysis of the Joyner-Boore attenuation data, Bull. Seism. Soc. Am., 75, 611-614.
Building Seismic Safety Council BSSC 1998. 1997 Edition NEHRP Recommended Provisions for Seismic Regulations for New Buildings and Other Structures, FEMA 302/303, Part 1 Provisions and Part 2 Commentary, developed for the Federal Emergency Management Agency, Washington, DC., 337 pp.
Byrne, D. E. Davis, D. M., and Sykes, L. R. 1988. Loci and maximum size of thrust earthquakes and the mechanics of the shallow region of subduction zone, Tectonics, 7, 833-857.
Campbell, K. W., 1981. Near-source attenuation of peak horizontal acceleration, Bull. Seism. Soc. Am., 71, 2039-2070.
Campbell, K. W., 1997. Empirical near-source attenuation relationships for horizontal and vertical components of peak ground acceleration, peak ground velocity, and pseudo-absolute acceleration response spectra, Seism. Res. Lett., 68, 154-179.
Chang, T. Y., Cotton, F., and Angelier, J., 2001. Seismic Attenuation and Peak Ground Acceleration in Taiwan, Bull. Seism. Soc. Am., 91, 1229-1246.
Chapman, M. C., 1995. Short notes a probabilistic approach to ground-motion selection for engineering design, Bull. Seism. Soc. Am., 85, 937-942.
Chinney, M. A. (1969). Earthquake magnitude and source parameters, Bull. Seis. Soc. Am., 59, 5, 1969-1982.
Chiou, S. J., Cheng, C. T., , Wessling, J. and Chang, C.Y., 2001. Probabilistic earthquake hazard in Taipei and surrounding regions, North American Taiwan Engineer Association, 38-45.
Cohen, S. C., 1996. Convenient formulas for determining dip-slip fault parameters from geophysical observables, Bull. Seism. Soc. Am., 86, 1642-1644.
Cohen, S. C., 1999. Numerical models of crustal deformation in seismic zones, Advances in Geophysics, 41, 133-231.
Coppersmith, K. J., 1991. Seismic source characterization for engineering seismic hazard analyses. Proceeding Fourth International Conference on Seismic Zonation, Stanford University, 4, 3-60.
Cornell, C. A., 1968. Engineering seismic risk analysis, Bull. Seism. Soc. Am., 58, 1583-1606.
Cornell, C. A., and Van Marke, E. H., 1969. The major influence on seismic risk, Proceedings Third World Conference on Earthquake Engineering, Sandiago, Chile, A-1, 69-93.
Cornell, C. A., and Winterstein, S. R., 1986. Applicability of the Poisson earthquake-occurrence model, in seismic hazard Methodology for the Central Eastern Unite Sates, EPRI Research Report NP-4736, Electric Power Research Institute, Palo Alto, California.
Cramer, C. H., 2001. A seismic hazard uncertainty analysis for the New Madrid seismic zone, Engineering Geology, 62, 251-266.
Cramer, C. H., and Petersen, M. D., 1996. Predominant seismic source distance and magnitude maps for Los Angeles, Orange, and Ventura Counties, California, Bull. Seism. Soc. Am., 86, 1645-1649.
Cramer, C. H., Pertersen, M. D., Cao, T., Toppozada, T. R., and Reichle, M., 2000. A time-dependent probabilistic seismic-hazard model for California, Bull. Seism. Soc. Am., 90, 1-21.
Cramer, C. H., Petersen, M. D., and Reichle, M. S., 1996. A Monte Carlo approach in estimating uncertainty for a seismic hazard assessment of Los Angeles, Ventura, and Orange counties, California, Bull. Seism. Soc. Am., 86, 1681-1691.
Crouse, C.B. 1991. Ground-motion attenuation equation for earthquake on Cascadia subduction-zone earthquake, Earthquake Spectra, 7, 210-236.
Davison, F. C., and Scholz, C. H., 1985. Frequency-Moment Distribution of Earthquakes in the Aleutian Arc, A Test of the Characteristic Earthquake Model. Bull. Seismo. Soc. Am., 75, 1349-1361.
EERI Committee on Seismic Risk, 1989. The basics of seismic risk analysis, Earthquake Spectra, 5, 675-702.
Frankel, A., Harmsen, S., Mueller, C., Barnhard, T., Leyendecker, E. V., and Perkins, D., 1997. USGS national seismic hazard maps: uniform hazard spectra, de-aggregation, and uncertainty, Proceedings of FHWA/NCEER Workshop on the National Representation of Seismic Ground Motion for New and Existing Highway Facilities, NCEER Technical Report 97-0010, 39-73.
Frankel, A., Mueller, C., Barnhard, T., Perkins, D., Leyendecker, E.V., Dickman N., Hanson, S., and Hopper, M., 1996. National Seismic-Hazard Maps: Documentation, U. S. Geological Survey Open-File Report 96-532, 41pp.
Fruneau, B., E. Pathier, D. Raymond, B. Deffontaines, C. T. Lee, H. T. Wang, J. Angelier, J. P. Rudant, and C. P. Chang , 2001. Uplift of Tainan Tableland (SW Taiwan) revealed by SAR interferometry, Geophy. Res. Lett., 28, 3071-3074.
Fujita, L. and Kanamori, H., 1981. Double seismic zones and stresses of intermediate depth earthquakes, Geophysical Journal of the Royal Astronomical Society of London, 66, p 131 – 156.
Gardner, J. K., and Knopoff, L., 1974. Is the sequence of earthquakes in southern California, eith aftershocks removed, poissonian?, Bull. Seism. Soc. Am., 64, 1363-1367.
Giner, J. J., Molina, S., Jauregui, P., and Delgado, J., A., 2002. new Methodology for Decreasing Uncertainties in the seismic hazard assessment results by using sensitivity analysis. An Application to sites in Eastern Spain, Pure and Appl. Geophys., 159, 1271-1288.
Gutenberg, B., and Richter, C. F., 1944. Frequency of earthquake in California, Bull. Seism. Soc. Am., 34, 185-188.
Hagiwara, Y. 1974. Probability of earthquake occurrence as obtained from a Weibull distribution analysis of crstal strain. Tectonophysics, 23. 313-318.
Hanks, T. C., and Kanamori, H., 1979. A moment magnitude scale, J. Geophys. Res., 84, 2348-2350.
Harmsen, C. S., 2001. Mean and modal ε in the deaggregation of probabilistic ground motion, Bull. Seism. Soc. Am., 91, 1537-1552.
Harmsen, C. S., and Frankel, A., 2001. Geographic deaggregation of seismic hazard in the United States, Bull. Seism. Soc. Am., 91, 13-16.
Harmsen, S., Perkins, D., and Frankel, A., 1999. Deaggregation of probabilistic ground motions in the Central and Eastern United States, Bull. Seism. Soc. Am., 89, 1-13.
Hung, J.H., Wiltschko, D.V., Lin, H.C., Hickman, J.B., Fang, H. and Bock, Y., 1999. Structure and motion of the southwestern Taiwan fold and thrust belt. TAO, 10, 543-568.
Iida, K., 1965. Earthquake magnitude, earthquake fault, and source dimensions, Journal of Earth Sciences, Nagoya University, 13, 2, 115-132.
Isacks, B. L., and Molnar, P., 1971. Distribution of stresses in the descending lithosphere from a global survey of focal mechanisms of mantle earthquakes, Reviews of Geophysics, 9, 103-174.
Jean, W. Yu., and Loh, C. H., 1998. A Study on Seismic Design Parameters, 國立台灣大學工程學刊, 73, 1-19. in Chinese
Kanamori, H., 1977. The energy release in great earthquakes, J. Geophys. Res., 82, 2981-2987.
Kao, H, and W.-P. Chen, 2000. The Chi-Chi earthquake sequence: Active, out-of-sequence thrust faulting in Taiwan, Science, 288, 2346-2349.
Kao, H., 1998. Can great earthquakes occur in the southernmost Ryukyu arc – Taiwan region?, TAO, 9, 487-508.
Kao, H., Shen, S. J., and Ma, K. F., 1998. Transition from oblique subduction to collision: Earthquakes in the southernmost Ryukyu arc – Taiwan region, J. Geophys. Res., 103, 7211 – 7229.
Kebede, F., and Van Eck, T., 1997. Probability seismic hazard assessment for the horn of Africa based on seismotetonic regionalization, Tectonophysics, 270, 221-237.
Keefer, D. L., and Bodily, S. E., 1983. Three-point approximations for continuous random variables: Management Science, 29, 595-609.
Kiureghian, A. D., and Ang, A. H-S., 1977. A fault- rupture model for seismic risk analysis, Bull. Seism. Soc. Am., 67, 1173-1194.
Kramer, S. L., 1996. Geotechnical Earthquake engineering, Prentic-Hall, Upper Saddle River, 653 pp.
Lacombe, O., F. Mouthereau, B. Deffontaines, J. Angelier, H. T. Chu, and C. T. Lee (1999) Geometry and Quaternary kinematics of fold-and-thrust units of southwestern Taiwan, Tectonics, 18, 1198-1223.
Lay, T., Kanamori, H., 1981. An asperity model of great earthquake sequences, Maurice Ewing Series, 4, 579-592.
Lee, C. T. 2001a, Active Deformation, Paleo-Earthquakes and Seismogenic Faults of Tainan City, Program Proceeding of 2001 Joint Geosciences Assembly- International Symposium on earthquake and Active Tectonics, 105-106.
Lee, C. T. 2001b, Holocene Tectonics of Tainan City, Taiwan, Abstracts of The International Meeting on both Sea-level changes and Coastal Evolution & Neotectonics (INQUA). 53-54.
Lee, C. T. and Wang. Y. 1988. Quaternary stress changes in northern Taiwan and their tectonic implications, Proc. Geol. Soc. China, 31, 154 – 168.
Lee, C. T., 1999. Neotectonics and active faults in Taiwan, Proceedings of the 1999 Workshop on Disaster Prevention/Management and Green Techonolgy, Foster City, California, 61-74.
Lee, C. T., Cheng, C. T., Liao, C. W., and Tsai, Y. B., 2001. Site Classification of Taiwan Free-field Strong-Motion Stations, Bull. Seism. Soc. Am., 91, 1283-1297.
Lee, S. J. and Ma K. F., 1999. Rupture process of the 1999 Chi-Chi, Taiwan, earthquake from the inversion of teleseismic data, TAO, 11, 591-608
Lindh, A. G., 1983. Preliminary assessment of long-term probabilities for large earthquakes along selected fault segments of the San Andreas fault system in California., U. S. Geol. Surv. Open-file Rept. 83-63.
Loh, C.H., Hwang, J.Y., and Shin T.C., 1998. Observed variation of earthquake motion across a basin – Taipei City, Earthquake Spectra, 14, 115 – 133.
Makropoulos, K. C., and Burton, P. W., 1983. Seismic Risk of Circum-Pacific Earthquake, 1. Strain Energy Release, PAGEOPH, 121.
Mao, S. T., and Kao, C.S., 1978. A risk model for seismic zoning of Taiwan, Proceedings of the International Conference on Microzonation for Safer Construction, Research and Application, 2, 367-377.
Matsuda, T., 1975. Magnitude and recurrence interval of earthquakes from a fault associated, J. Seism. Soc. Japan, Series 2, 28, 268-283.
McGuire, R. K., 1995. Probabilistic Seismic Hazard Analysis and Design Earthquakes: Closing the Loop, Bull. Seism. Soc. Am., 85, 1275-1284.
McGuire, R. K., and Shedlock, K. M., 1981. Statistical Uncertainties in Seismic Hazard Evaluations in The United States, Bull. Seism. Soc. Am., 71, 1287-1308.
Merz, H. A., and Cornell, C. A., 1973. Seismic Risk Analysis based on a Quadratic Magnitude-Frequency Law, Bull. Seism. Soc. Am., 63, 1999-2006.
Milne, G. W., and Davenport, A. G., 1969. Distribution of Risk in Canada, Seism. Soc. Am., 59, 729-754.
Molas, G. L., and Yamazaki, F., 1995. Attenuation of earthquake ground motion in Japan including deep focus event, Bull. Seism. Soc. Am., 85, 1343-1358.
National Research Council 1988 Probabilistic Seismic Hazard Analysis, National Academic Press, Washington, D.C., 97pp.
Nishenko, S. P. and Buland, R. 1987. A generic recurrence interval distribution for earthquake forecasting, Bull. Seismol. Soc. Am., 77, 1382-1399.
Pacific Gas and Electric Company (PG&E), 1988. Diablo Canyon Power Plant Long term Seismic program, Final Report unpublished document.
Petersen, M. D., Bryant, W. A., Cramer, C. H., Cao, T., Reichle, M. S., Frankel, A. D., Lienkaemper, J. J., McCrory, P. A., Schwartz, D. P., 1996. Probabilistic seismic hazard assessment for the state of California, U. S. Geological Survey Open-File Report 96-0706, 33pp.
Rau, R. J., 1992. 3-D seismic tomography, focal mechanisms, and Taiwan orogeny, Ph.D. dissertation in Geological Sciences of Binghamton University, New York, 222pp.
Reiter, L., 1991. Earthquake hazard analysis; issues and insights, Columbia Univ. Press, New York, 254pp.
Romeo, R., and Pugliese, A., 2000. Seismicity seismotectonics and seismic hazard of Italy, Engineering Geology, 55, 241-266.
Sadigh, K., C. -Y. Chang, J. A. Egan, F. Makdisi, and R. R. Youngs, 1997. Attenuation relationships for shallow crustal earthquakes based on california strong motion data, Seism. Res. Lett. 68, 1, 180-189.
Sadigh, K., Chang, C. Y., Egan, J. A., Makdisi, F., and Youngs, R. R., 1997. Attenuation relationships for shallow crustal earthquakes based on California strong motion data, Seism. Res. Lett., 68, 180-189.
Scholz, C. H., 1990. The mechanics of earthquakes and faulting, Cambridge University press, UK, 439pp.
Schwartz, D. P., and Coppersmith, K. J., 1984. Fault Behavior and Characteristic Earthquakes: Example From the Wasatch and San Andreas Fault Zones, J. Geophys. Res., 89, 5681-5698.
Seno, T., Stein, S., Gripp, A. E., 1993. A model for the motion of the Philippine Sea Plate consistent with NUVEL-1 and geological data, Journal of Geophys. Res., B, Solid Earth and Planets, 98, 17941-17948.
Slemmons, D. B., 1982. Determination of design earthquake magnitudes for microzonation, Proceedings, 3rd International Earthquake Microzonation conference, Seattle, Washington, 1, 119-130.
Somerville, P. G., Smith, N. F. and Graves, R. W., 1997. Modification of empirical strong motion ground motion attenuation relation to include the amplitude and duration effects to rupture directivity, Seism. Res. Lett. 68, 199-222.
Somerville, P. G., Smith, N. F., Graves, R. W., and Abrahamson N. A., 1997. Modification of empirical strong ground motion attenuation relations to include the amplitude and duration effects of rupture directivity, Seism. Res. Lett., 68, 199-222.
Stirling, M. W., McVerry, G. H., and Berryman, K. R., 2002. A new seismic hazard model for New Zealand, Bull. Seism. Soc. Am., 92, 1979-1903.
Sykes, L. R. and Nishenko, S. P., 1984. Probabilities of occurrence of large plate rupturing earthquakes for the San Andreas, San Jacinto, and Imperial faults, California, 1983-2003, J. Geophys. Res., 89, 5905-5927.
Teng, L.S., and Lee, C.T., 1996. Geomechanical appraisal of seismogenic faults in northeast Taiwan, Journal of the Geological Society of China, 39, 125-142.
Teng, Louis S., Lee, C. T., Tsai, Y. B. and Hsiao, L.-Y., 2000. Slab breakoff as a mechanism for flipping of subduction polarity in Taiwan, Geology, 20, 155-158.
Tocher, D. (1958). Earthquake energy and ground breakage [California and Nevada], Bull. Seis. Soc. Am., 48, 2, 147-153.
Toro, G. R., Abrahamson, N.A., and Schneider, J. F., 1997. Model of strong ground motion attenuation relationships for subduction zone earthquakes, Seism. Res. Lett., 68, 41-57.
Toro, G. R., N. A. Abrahamson, and J. F. Schneider, 1997. Model of strong ground motions from earthquakes in central and eastern north america: best estimates and uncertainties, Seism. Res. Lett. 68, 1, 41-57.
Tsai, C. C. Peter, 1997. A study of the effects of source scaling on seismic zonation in southwestern Taiwan, Journal of the Geological society of China, 40, 761-780.
Tsai, C. C. Peter, 1998. Engineering Ground Motion Modeling in the Near-Source Regime using the specific Barrier Model for Probabilistic seismic hazard analysis, Pure and applied Geophysics, 152, 107-123.
Tsai, C. C., C. H. Loh and Y. T. Yeh (1987). Analysis of earthquake risk in Taiwan based on seismotectonic zones, Memoir of the Geological Society of China, 9, 413-446.
Tsai, C. C., Loh, L. H., and Yeh, Y. T., 1987. Analysis of earthquake risk in Taiwan based on seismotectonic zones, Memoir Geol. Soc. China, 9, 413-446.
Tsai, Y.B., 1986. Seismotectonics of Taiwan, Tectonophysics, 125, 17-37.
Uhrhammer, R. A., 1986. Characteristic of northern and central California seismicity abs., Earthquake Notes, 1, 21.
Wallace, R. E., 1970. Earthquake recurrence intervals on the San Andreas fault, Geological Society of America Bulletin, 81, 2875-2889.
Wang, C.Y., and Sun, C. T., 1999. Interpretation of seismic stratigraphy in the Taipei basin, in Special Issue for the Subsurface Geology and Engineering Environment of Taipei Basin, Central Geological Survey Special Publication, Taipei, Taiwan, Republic of China, 11, 273-292, in Chinese
Wang, J. H, and Kuo, C. H., 1998. On the frequency distribution of interoccurence time of earthquakes, Journal of seismology, 2, 351-358.
Weichert, D. H., 1980. Estimation of the earthquake recurrence parameters for unequal observation periods for different magnitudes, Bull. Seism. Soc. Am., 70, 1337-1346.
Wells, D. L. and K. J. Coppersmith, 1994. New empirical relationships among Magnitude, rupture length, rupture width, rupture area, and surface displacement, Bull. Seis. Soc. Am., 84, 4, 974-1002.
Wesnousky, S. G., 1994. The Gutenberg-Richter or Characteristic Earthquake Distribution, Which Is It? Bull. Seismo. Soc. Am., 84, 1940-1959.
Wesnousky, S. S., Scholz C., Shimazaki. K., and Matsuda, T., 1984. Integration of geological and seismological data for the analysis of seismic hazard: A case study of Japan, Bull. Seismol. Soc. Am. 74, 687-708.
Woo, G. , 1996. Kernel Estimation Methods for Seismic Hazard Area Source Modeling, Bull. Seism. Soc. Am., 86, 353-362.
Working Group on California Earthquake Probabilities, 1999. Earthquake Probabilities in the San Francisco Bay Region: 2000-2030- A Summary of Findings, U. S. Geological Survey Open-File Report 99-517, 36pp.
Wu, F.T., 1978. Recent tectonics of Taiwan, J. Phys. Earth, 26 suppl., S265 – S299.
Wyss, M., 1979. Estimating maximum expectable magnitude of earthquakes from fault dimensions, Geology, 7, 336-340.
Yeats, R. S, Sieh, K., Allen, C.R., 1997. The Geology of Earthquake, Oxford University Press, New York, 568pp.
Yeh, Y. T., Loh, C. H., 1989. Seismic hazard assessment in Taiwan, Proceeding of the Japan-China (Taipei) Joint Seminar on National Hazard Mitigation., Kyoto, Japan, July 16-20, 77-86.
Yeh, Y. T., Wen, K.L., and Tsia, Y. B., 1984. Seismic risk evaluation on the possible sites for Taiwan Power Company’s base loading power plant, Institute of Earth science, Academia Sinica, ASIES-ER8417, 96pp.
Youngs, R. R., S.-J. Chiou, W. J. Silva, and J.R. Humphrey, 1997. Strong Ground Motion Attenuation Relationships for Subduction Zone Earthquakes, Seism. Res. Lett. 68, 1, 58-73.
Youngs, R.R., Abrahamson, N.A., Makdisi, F., and Sadigh, K., 1995. Magnitude dependent dispersion in peak ground acceleration, Bull. Seism. Soc. Am., 85, 1161-1176.
Youngs, R.R., and Coppersmith, K. J. 1985. Implications of fault slip rates and earthquake recurrence models to probabilistic seismic hazard estimates, Bull. Seism. Soc. Am., 75, 939-964.
Youngs, R.R., Chiou, S.-J., Silva, W.J., and Humphrey, J.R. 1997. Strong ground motion attenuation relationships for subduction zone earthquakes, Seism. Res. Letters, 68, 1, 58-73.
Yu, S. B., and Chen, H. Y., 1998. Strain accumulation in southern Taiwan, TAO, 9, 31-50.
Yu, S. B., Chen, H. Y., and Kuo, L. C., 1997. Velocity field of GPS Stations in the Taiwan area. Tectonophysics, 274, 41-59.
Zhang, P. Z., Yang, Z. X., Gupta, H. K., Bhatia, S. C., and Shedlock, K. M., 1999. Global Seismic Hazard Assessment Program (GSHAP) in Continental Asia, Annali di Geofisica, 42, 1167-1190.
指導教授 李錫堤、蔡義本
(Chyi-Tyi Lee、Yi-Ben Tsai)
審核日期 2003-1-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明