博碩士論文 86246003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:4 、訪客IP:3.235.74.184
姓名 黃通隆(Tong-Long Huang)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 雷 射 穩 頻 之 研 究
(Studies of the Frequency Stabilization of Lasers: He-Ne, Nd:YAG, and a-DFB Lasers)
相關論文
★ 快流式二氧化碳雷射中氮與氦角色的重新定位★ 二氧化碳雷射輔助電漿激發式化學氣相沈積非晶形二氧化矽薄膜
★ 氫氣對二氧化碳雷射誘發化學氣相沈積法成長碳質膜之影響★ 高功率棒型Nd:YAG雷射熱效應非敏共振腔之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文中,我們研究雷射穩頻的機制,其中包含氣態、固態和半導體雷射。
在氣態雷射穩頻方面,我們首先研究一波長為612 nm之短共振腔內鏡式氦氖雷射的偏振特性。我們發現在雷射功率輪廓中間附近會有一凸出部份,經研究得知雷射共振模在此一小區域中含有互相垂直的兩個偏振分量,此一區域亦即所謂的偏振轉變之處。然而,當雷射的兩個共振模位於對稱位置時,這兩個模都是線性偏振且其偏振方向互相垂直。因此我們即可用雙模穩頻法將雷射頻率穩定,且其穩定度可達5 ×10-10。此外,我們還研究了一支波長1523 nm 之內鏡式氦氖雷射的偏振特性,我們發現這雷射在正常工作下及外加橫向磁場時,皆無法使用簡單的雙模穩頻法來作雷射穩頻,唯有在外加軸向磁場時才可使用雙模穩頻法。當外加軸向磁場在12 mT 附近時,這雷射可以有單模輸出,且該模位於雷射增益輪廓中央附近並含有左旋或右旋之偏振分量。另外,由於模與模之間的互相競爭,當兩共振模位於對稱位置附近時,兩共振模僅是左旋或右旋之偏振模。因此我們即可用雙模穩頻法將雷射頻率穩定,且其穩定度可達1 MHz以內。這穩頻雷射的特徵是可以選擇為一含有左旋或右旋偏振分量之單模輸出,此兩分量之頻率差為400kHz;也可以選擇輸出為強度相同且僅為左旋或右旋偏振之雙模。
在固態雷射穩頻方面,我們使用一支半導體雷射幫浦的單石Nd:YAG雷射嘗試著去發展簡單新的穩頻系統。首先,我們將一矽玻璃材質的法布里-泊羅共振腔施以外力或加軸向磁場,使其產生雙折射作用,並利用雙折射效應所造成兩分離共振頻的強度差作為誤差信號來穩定雷射頻率。經測量這矽玻璃在1064 nm 的光波長中,它的光應力係數和Verdet 常數分別為 1.7×10-12 m2/N 和 2.95 rad.Tesla-1.M-1。對我們雷射頻率的穩定而言,欲得到適當的雙折射,外加應力應為 60 g/cm2 ,而外加磁場應為 20 mT。我們獲得的雷射頻率穩定度為 2 kHz。其次,我們利用一週期性區域反轉之鈮酸鋰晶體來作為光倍頻器,獲得532 nm 波長的倍頻光,並利用一震動鏡的方法來研究碘分子在532 nm 之調頻飽和吸收光譜,進而將雷射頻率穩定在碘分子的躍遷譜線上。
在半導體雷射穩頻方面,我們首度應用一倍頻的α-DFB 半導體雷射來觀察碘分子在531 nm 波長的躍遷譜線,並將雷射頻率鎖在碘分子之 R(94) 34-0 或 R(70) 33-0 第a10 的超精細躍遷譜線上。所得到的頻率穩定度為5 × 10-11。這樣的穩頻系統由於具備著體積小、價格低和可靠性高等優點,這穩頻雷射成為未來在531 nm 波段的頻率標準應是指日可待的。
摘要(英) For frequency stabilization of the gas laser, we studied the first the polarization properties of a short internal-mirror 612 nm He-Ne laser. We found that polarization flip did not occur at the symmetric two-mode location but near the center of the power profile. Therefore, the laser could be frequency-stabilized using the two-mode method, and the stability achieved was better than 5 ×10-10 . This laser can be used as a light source in length measurements using multi-color interferometers. On the other hand, we studied the polarization properties of an internal-mirror 1523 nm He-Ne laser without and with a magnetic field. When the axial magnetic field was around 12 mT, the laser operated in single mode with two opposite circularly polarized components near the center of gain profile. In addition, due to the competition between these two opposite circularly polarized components, each mode had only one circularly polarized component survived when the laser operated in the two-mode region. We could stabilize the laser frequency at either the center of gain profile or the symmetric two-mode taking advantage of the power difference between the two circularly polarized components of the laser output, and the stability achieved was better than 1 MHz.
For frequency stabilization of the solid state laser, we attempted to develop a new method of simple and low cost to stabilize a diode pumped monolithic Nd:YAG laser. First, we measured the birefringence of a Fabry-Perot etalon under applied stress and axial magnetic field. The stress optical coefficient and Verdet constant of fused silica obtain were 1.7×10-12 m2/N and 2.95 rad.Tesla-1.M-1 at wavelength of 1064 nm. For frequency stabilization of our laser, the suitable birefringence of the Fabry-Perot etalon was generated by applying stress of 60 g/cm2 or an axial magnetic field of 20 mT. The frequency stability obtained was 2 kHz. Next, we studied frequency modulation (FM) saturated absorption spectroscopy of 127I2 near 532 nm by using a periodically-poled LiNbO3 single-pass frequency doubler. The hyperfine transition of iodine near 532 nm was observed by a vibrating mirror.
For frequency stabilization of semiconductor laser, we report, for the first time, the observation of the iodine hyperfine transitions at 531 nm using a frequency-doubled angled-grating DFB (α-DFB) semiconductor laser. The moderate high power of the α-DFB laser allows us to generate the second harmonic light by a periodically-poled LiNbO3 single-pass frequency doubler. We can stabilize this laser frequency to the hyperfine component a10 of R(94) 34-0 or R(70) 33-0 I2 line, and the preliminary frequency stability was about 5 × 10-11. This laser system is an attractive frequency standard at 531 nm due to its compact size, high reliability, and low cost.
關鍵字(中) ★ 頻率穩定
★ 氦氖雷射
★ Nd:YAG雷射
★ a-DFB雷射
★ 偏振特性
★ 都卜勒光譜
關鍵字(英) ★ frequency stabilization
★ He-Ne laser
★ Nd:YAG laser
★ a-DFB laser
★ polarization properties
★ sub-doppler spectroscopy
論文目次 Chapter 1 Introduction --------------------------------------------------------------------------- 1
Chapter 2 Frequency Stabilization of an Internal-Mirror 612 nm He-Ne Laser-------- 8
2-1 introduction -------------------------------------------------------------------------- 8
2-2 Polarization properties ------------------------------------------------------------- 9
2-3 Two-mode frequency stabilization ----------------------------------------------- 11
2-4 Conclusions -------------------------------------------------------------------------- 12
Chapter 3 Polarization Properties and Frequency Stabilization of an Internal Mirror
1523 nm He-Ne Laser ---------------------------------------------------------------- 18
3-1 Introduction -------------------------------------------------------------------------- 18
3-2 Polarization properties ------------------------------------------------------------- 20
3-2-1 Polarization properties without magnetic fields ------------------------- 21
3-2-2 Polarization properties under transverse magnetic field ---------------- 22
3-2-3 Polarization properties under axial magnetic field ---------------------- 23
3-3 Frequency stabilization ------------------------------------------------------------ 26
3-3-1 Two-mode frequency stabilization ---------------------------------------- 26
3-3-2 Frequency Stabilization of a longitudinal Zeeman laser --------------- 28
3-4 Conclusions ------------------------------------------------------------------------- 29
Chapter 4 Frequency stabilization of Nd:YAG laser using a birefringent
Fabry-Perot etalon ----------------------------------------------------------------- 40
4-1 Introduction ----------------------------------------------------------------------- 40
4-2 Principle of the birefringent Fabry-Perot etalon ---------------------------- 41
4-3 Experiment and results ---------------------------------------------------------- 44
4-4 Conclusion ------------------------------------------------------------------------ 47
Chapter 5 Frequency modulation spectroscopy of iodine near 532 nm using
a vibrating mirror ----------------------------------------------------------------- 54
5-1 Introduction ---------------------------------------------------------------------- 54
5-2 experimental setup -------------------------------------------------------------- 55
5-3 Results and Discussion --------------------------------------------------------- 57
Chapter 6 Sub-Doppler spectroscopy of molecular iodine at 531 nm using
a frequency-doubled α-DFB laser -------------------------------------------- 64
6-1. Introduction -------------------------------------------------------------------- 64
6-2 Characteristics of a angle-grating semiconductor laser -------------------- 65
6-3 Experiments and results ------------------------------------------------------- 66
6-4 Conclusions --------------------------------------------------------------------- 69
Chapter 7 Conclusions ----------------------------------------------------------------------- 83
References: -------------------------------------------------------------------------------------- 85
參考文獻 [1] A. Sasaki, S. Ushimaru, and T. Hayashi: Jpn. J. Appl. Phys. 23, (1984) 593.
[2] K. Seta and S. Iwasaki: Opt. Commun. 55, (1985) 367.
[3] K. C. Peng. L. A. Wu, and H. J. Kimble: Appl. Opt. 24, (1985) 938.
[4] C. Salomon, D. Hils, and J. L. Hall: JOSA B5, (1988) 1576.
[5] J. L. Hall, L. S. Ma, and G. Kramer: IEEE J. Quantum Electron. QE-23, (1987) 427.
[6] R. Balhorn, H. Kunzmann, and F. Lebowsky: Appl. Opt. 11, (1972) 742.
[7] T. Yoshino: Jpn. J. Appl. Phys. 19, (1980) 2181.
[8] S. J. Bennett, R. E. Ward, and D. C. Wilson: Appl. Opt. 12, (1973) 1406.
[9] P. E. Ciddor, and R. M. Duffy: J. Phys. E 16, (1983) 1223.
[10] K. Seat, and S. Iwasaki: Opt. Commun. 55, (1985) 367.
[11] A. Sasaki, and T. Hayashi: Jpn. J. Appl. Phys. 21, (1982) 1455.
[12] T. M. Niebauer, J. E. Faller, H. M. Godwin, J. L. Hall, and R. L. Barger: Appl. Opt. 27, (1988) 1285.
[13] Pugh, D. J. and K. Jackson: SPIE 656, (1986) 244.
[14] D. J. E. Knight, P. S. Hausell, H. C. Leeson, G. Duxbury and J. Meldan and M. Lawrence: Proc. SPIE 1837, (1993) 106.
[15] J. W. Eerkens, and W. W. Lee: Proc. SPIE 500, (1984) 131.
[16] C. W. Wu and H.-C. Chang: IEEE Photon. Technol. Lett. 9, (1997) 206.
[17] M. L. Eickhoff and J. L. Hall: IEEE Trans. Instrum. Meas. 44, (1995) 155.
[18] A. Arie and R. L. Byer: J. Opt. Soc. Amer. B, 10, (1993) 1990.
[19] A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gursel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker: Science 256, (1992) 325.
[20] N. Mio, T. Yuzawa, and S. Moriwaki: Appl. Opt. 37, (1998) 166.
[21] A. Arie, S. Schiller, E. K. Gustafson, and R. L. Byer: Opt. Lett. 17, (1992) 1204.
[22] F. L. Hong and J. Ishikawa: Proc. CPEM’96 Conf. (1996).
[23] Le Systeme International d’unites, 7th ed. BIPM-OICM, Annex 2. (1998) 58.
[24] S. Gesterncorn and P. Luc: Atlas du Spectre d’ Absorption de la Molecule Iodine, Orsay, France (1977).
[25] BIPM Proc. Verb. Com. Int. Poids et Mesures 60, Recommendation 2 (CI-1992).
[26] J. Ye, L. Robertsson, S. Picard, L. S. Ma and J. L. Hall: IEEE Trans. Instrum. Meas. 48 (1999) 544.
[27] W. Y. Cheng, J. T. Shy, and T. Lin: Opt. Commun.156 (1998) 170.
[28] J. L. Hall, L. S. Ma, M. Taubman, B. Tiemann, F. L. Hong, O. Pfister, and J. Ye: IEEE Trans. Instrum. Meas. 48 (1999) 583.
[29] A. M. Sarangan, M. W. Wright, J. R. Marciante and D. J. Bossert: IEEE J. Quantum Electron. 35 (1999) 1220.
[30] L. S. Ma and J. L. Hall: IEEE J. Quantum Electron. QE-26, (1990) 2006.
[31] E. Jaatinen and N. Brown: Metrologia 32, (1995) 95.
[32] M. Bisi and F. Bertinetto: Metrologia 34, (1997) 451.
[33] W. R. C. Rowley and P. Gill: Appl. Phys. B, 51, (1990) 421.
[34] Y. M. Bondarchuk, A. N. Vlasov, R. M. Voznyak, P. S. Krylov, and V. E. Privalov: Opt. Spektrosc, 66, (1989) 556.
[35] C. I. Eom, T. B. Eom, and M. S. Chung: Appl. Phys. Lett. 57, (1990) 739.
[36] D. Lenstra and G. C. Herman: Physica 95C, (1978) 405.
[37] E. K Hasle: Opt. Commun. 31, (1979) 206.
[38] P. N. Puntambekar, H. S. Dahiya, and V. T. Chitnis: Opt. Commin. 41, (1982) 191.
[39] T. Lin and J. T. Shy: Jpn. J. Appl. Phys. 29, (1990) 878.
[40] J. Lazar and P. H. J. Schellekens: Opt. Commun. 119, (1995) 117.
[41] N. Mio and K. Tsubono: Jpn. J. Appl. Phys. 29, (1990) 883.
[42] A. Sasaki: Jpn. J. Appl. Phys. 22, (1983) 1538.
[43] D. Polder and W. V. Haeringen: Phys. Lett. 19 (1965) 380.
[44] H. D. Lang and G. Bouwhuis: Phys. Lett. 20 (1966) 383.
[45] D. Polder and W. V. Haeringen: Phys. Lett. A25 (1967) 337.
[46] D. Lenstra: Phys. Rep. 59 (1980) 299.
[47] W. J. Tomlinson, R. L. Fork: Phys. Rev. 164 (1967) 466.
[48] M. Sargent III, W. E. Lamb, Jr., and R. L. Fork: Phys. Rev. 164, (1967) 436.
[49] M. Sargent III, W. E. Lamb, Jr., and R. L. Fork: Phys. Rev. 164 (1967) 450.
[50] W. J. Tomlinson, R. L. Fork: Appl. Opt. 8 (1969) 121.
[51] M.-L. Junttila and B. Stahlberg: Physica Scr. 41 (1990) 667.
[52] W. Yizun, G. Kejian, Y. Tong, and T. Feng: Electron. Lett. 23, (1987) 318.
[53] G. Fischer: Electron. Lett. 23, (1987) 206.
[54] H. D. Lang: Philips Res. Repts. Suppl. 8, (1967) 211.
[55] H. D. Lang, G. Bouwhuis, and E. T. Ferguson: Phys. Lett. 19, (1965) 482.
[56] J. B. Ferguson, and R. H. Morris: Appl. Opt. 17, (1978) 2924.
[57] W. Culshaw and J. Kannelaud: Phys. Rev. 133, (1964) 691.
[58] R. l. Barger, M. S. Screm, abd J. L. Hall: Appl. Phys. Lett. 22, (1973) 573.
[59] R. L. Barger, J. B. West, and T. C. English: Appl. Phys. Lett. 27, (1975) 31.
[60] J. Helmcke, S. A. Lee, and J. L. Hall: Appl. Opt. 21, (1982) 1686.
[61] A. D. White: IEEE Quantum Electron. QE-1, (1965) 349.
[62] R. E. Grove, F. Y. Wu, and S. Ezekiel: Opt. Eng. 13, (1974) 531.
[63] R. V. Pound: Rev. Sci. Instrum. 17, (1946) 490.
[64] R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward: Appl. Phys. B, 31, (1983) 97.
[65] T. W. Hansch and B. Couillaud: Optics Commun. 35, (1980) 441.
[66] C. E. Wieman and S. L. Gilbert: Opt. Lett. 7 (1982) 480.
[67] C. J. Simmons, and O. H. Ei-Bayoumi: “Experimental techniques of glass sciences” American Ceramic Society, (1993) 187.
[68] P. A. Jungner, S. Swarz, M. L. Eickhoff, J. Ye, J. L. Hall, and S. Waltman: IEEE Trans. Instrum. Meas. 44, (1995) 151
[69] P. A. Jungner, M. L. Eickhoff, S. D. Swarz, J. Ye, and J. L. Hall: Proc. SPIE 2378, (1995) 22.
[70] F. L. Hong, J. Ishikawa, J. Yoda, J. Ye, L. S. Ma, and J. L. Hall: IEEE Trans. Instrum. Meas. 48, (1999) 532.
[71] A. Arie and R. L. Byer: Appl. Opt. 32, (1993) 7382.
[72] N. Shen, E. J. Zang, H. Cao, K. Zhao, H. Lu, X. Zhang, Y. Sun, C. Xu, X. Chen, K. Zhang, and X. Bai: IEEE Trans. Instrum. Meas. 48, (1999) 604.
[73] G. Galzerano, E. Bava, M. Bisi, F. Bertinetto, and C. Svelto: IEEE Trans. Instrum. Meas. 48, (1999) 532.
[74] T. Mitsui, K. Yamashita, and K. Sakurai: Appl. Opt. 10, (1997) 5494.
[75] S. Gerstenkorn and P. Luc: Atlas Du Spectre D’Absorption de la Molecule D’Iode 14800-20000 cm-1. Completement: Identification des transitions du systeme (B-X), Editions du CNRS, Paris, 1985.
[76] J. H. Shirley: Opt. Lett.7 (1982) 537.
[77] V. V. Wong, S. D. DeMars, A. Schoenfelder, and R. Lang: CLEO ’98, Tech. Dig. (1998) 34.
[78] B. Pezeshki, M. Hagberg, M. Zelinski, S. D. DeMars, E. Kolev, and R. J. Lang: IEEE Photo. Technol. Lett. 11 (1999) 791.
[79] G. D. Miller, R. G. Batchko, W. M. Tulloch, D. R. Weise, M. M. Fejer and R. L. Byer: Opt. Lett. 22 (1997) 1834.
[80] A. Razet and S. Picard: Metrologia 34 (1997) 181.
[81] S. Picard, Private Communications.
[82] D. G. Lancaster, R. Weidner, D. Richter, F. K. Tittel and J. Limpert: Opt. Commun.175 (2000) 461.
[83] M. Prevedelli, P. Cancio, G. Giusfredi, F. S. Pavone and M. Inguscio: Opt. Commun.125 (1996) 231.
[84] G. C. Bjorklund: Opt. Lett.5 (1980) 15.
[85] D. G. Lancaster, D. Richter, R. F. Curl and F. K. Tittel: Appl. Phys. B 67 (1998) 339.
指導教授 劉海北(Hai-Pei Liu) 審核日期 2000-7-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明