博碩士論文 86321027 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:3.133.159.224
姓名 何政恩(Cheng-En Ho)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 先進半導體封裝技術中之金脆效應及其有效抑制方法
(THE GOLD-EMBRITTLEMENT PHENOMENON IN ADVANCED ELECTRONIC PACKAGES ANDITS PREVENTION)
相關論文
★ Au濃度Cu濃度體積效應於Sn-Ag-Cu無鉛銲料與Au/Ni表面處理層反應綜合影響之研究★ 球矩陣式電子封裝中鎳與鉛錫合金及鉛鉍錫合金界面反應之研究
★ Sn-3.5Ag無鉛銲料與BGA墊層反應之研究★ 矽鍺半導體材料與鈷矽鍺化合物間相平衡與擴散之探討
★ 58Bi-42Sn無鉛銲料與球矩陣封裝中Au/Ni/Cu墊層界面反應之研究★ 金濃度對球矩陣構裝銲點剪力強度影響之研究
★ 927℃ Nb-Si-Ge與600℃ Cu-Si-Ge兩三元平衡相圖之研究★ 以Lactobacillus reuteri菌發酵glycerol生成reuterin做為生物組織材料天然滅菌劑的探討
★ 錫銅無鉛銲料與Ni基材界面反應之研究★ 電遷移效應對錫微結構影響之探討
★ SnAgCu無鉛銲料與BGA之Au/Ni墊層反應之研究★ Reuterin的發酵生成與化學合成及其在生物組織材料上的應用
★ 覆晶封裝中電遷移效應導致之銅溶解現象★ 一種兼具低消耗速率及抗氧化作用之銲點墊層材料
★ 覆晶接點與錫電路之電遷移微結構變化模式研究★ 電遷移對銅原子在熔融錫鉛銲料中擴散行為之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) ABSTRACT
Solder joints are the most vulnerable links in microelectronic devices. In fact, failure in solder joints is the most common root cause responsible for malfunction in electronic products. Therefore, improving the solder joints reliability is one of the most important tasks for electronic industry.
Gold-bearing finishes, such as the Au/Ni bi-layer, are extensively used in the electronic devices to protect the solderable pads against oxidation that can degrade the reliability of solder joints. After soldering, the surfaces Au will get into the solder and form many Au-bearing intermetallic particles, (Au1-xNix)Sn4. Ductility loss of the solder due to the presence of these brittle (Au1-xNix)Sn4 particles in the matrix is known as the “gold-embrittlement” [BAN1, DAE, DUC, ENW, FOS, GLA2, VIA, WIL]. Typically, the “gold-embrittlement” phenomenon occurres in the solder joint as the gold concentration is in excess of 3 wt.%. However, recent studies [BAN2, MEI2, MIY] reported that a different “gold-embrittlement” phenomenon could occur at a nominal Au concentration, which was much less than 3 wt.%. Instead of weakening the bulk solder, it deteriorated the solder/pad interface by forming a continuous (Au1-xNix)Sn4 layer at the interface. This second phenomenon has become a critical issue in the electronic industry for many years. The objective of this thesis is to probe into the mechanism for this phenomenon and to find approaches to inhibit this phenomenon.
In this thesis, it is established that the (Au1-xNix)Sn4 was based on the AuSn4 structure. It is proposed that the driving force for (Au1-xNix)Sn4 to come back to the interface is to seek Ni to become more Ni-rich so that the Gibbs free energy can become smaller. Furthermore, this thesis suggests three techniques to avoid the formation of a brittle (Au1-xNix)Sn4 layer at the interface. The first technique is to use a thinner gold in the surface finish so that the amounts of (Au1-xNix)Sn4 formed is smaller. The second is to saturate the AuSn4 with added Ni so that AuSn4 does not have to go back to the interface for Ni. The third is to avoid the formation of (Au1-xNix)Sn4 by adding a specific amount of Cu (0.5 wt.%) inside the joint. In fact, the doped Cu will form a more stable Cu6Sn5-based phase and force the Au atoms to dissolve into and trap by it, instead of forming the undesirable (Au1-xNix)Sn4.
In the Appendix of this thesis, the strong effect of Cu on the interfacial reaction will be reported. We found that the structure of the intermetallic compound formed was very sensitive to a slight variation in the Cu concentration of solder joints. When the solder joints are Cu-free, the intermetallic compound had the crystal structure based on Ni3Sn4. With increasing Cu concentration, the reaction products changed from a Ni3Sn4-based compound into a Ni3Sn4-based compound plus a Cu6Sn5-based compound. When the Cu concentration increased even more, the reaction product became a Cu6Sn5-based compound. More importantly, it was found that the formation of Cu6Sn5-based compound at the interface could result in a lower Ni consumption rate. This reduction in Ni consumption suggests that a thinner Ni layer can be used with Cu-doped solder joints. Rationalizations for these effects were presented in the main text of Appendix A.
關鍵字(中) ★ 銲料
★ 封裝
★ 金脆
關鍵字(英) ★ package
★ gold-embrittlement
★ solder
論文目次 CONTENTS
Page
ABSTRATE (CHINESE) I
ABSTRATE (ENGLISH) III
CONTENTS V
LIST OF TABLES VIII
FIGURES CAPTION IX
CHAPTER I INTRODUCTION: PACKAGES AND SOLDERS
1.1 Microelectronic Packages 2
1.2 Soldering, Solders, and Au/Ni Surface Finish 10
1.3 Reaction Kinetics of Solder with Au/Ni during Soldering: The Formation of (Au1-xNix)Sn4 in Solder Joints 33
CHAPTER II CATASTROPHIC FAILURE IN ADVANCED PACKAGES: EXTREMELY WEAK SOLDER JOINTS INDUCED BY (AU1-XNIX)SN4 INTERMETALLIC
2.1 Traditional “Gold-Embrittlement” in Bulk Solder 48
2.2 New “Gold-Embrittlement” Induced by (Au1-xNix)Sn4 Migration to the Solder/Pad Interface, Forming the (Au1-xNix)Sn4/Ni3Sn4 Intermetallic-to-Intermetallic Interface 53
2.3 The Objective of this Thesis 60
CHAPTER III THE MECHANISM FOR (AU1-XNIX)SN4 MIGRATION TO THE INTERFACE
3.1 Interesting (Au1-xNix)Sn4 Phenomena in Solder Joints: Our Observations 62
3.1.1 Solder Joints Aged at 100-180oC 65
3.1.2 Crystal Structure of (Au1-xNix)Sn4 81
3.1.3 Multiple “Reflow-Aging” Cycles 88
3.2 Driving Force for (Au1-xNix)Sn4 Migration to the Interface 96
3.3 Kinetic Rationales for (Au1-xNix)Sn4 Migration 110
CHAPTER IV TECHNIQUES FOR INHIBITING THE FORMATION OF THE BRITTLE (AU1-XNIX)SN4 LAYER AT THE INTERFACE
4.1 Using An Ultra-Thin Au Finish for Soldering 122
4.2 The Competitor, “Ni”, Doped into Solder Joints 130
4.3 Appling Cu6Sn5-Based Compound to Incorporate Au 133
4.3.1 Discovery of Cu Participation in the Reaction 134
4.3.2 Using Cu-Bearing Solders for Soldering 147
CHAPTER V CONCLUSION 165
APPENDIX
A. Strong Effect of Cu Concentration on the Interfacial Reaction 167
A.1 Controlling the Formation of Intermetallics 168
A.2 Reducing the Consumption of Ni Metallization 199
B. Solubility of Au in Ni3Sn4 at Different Locations 215
C. Lists of Publications 220
REFERENCES 223
參考文獻 REFERENCES
[ANH] S. Anhöck, H. Oppermann, C. Kallmayer, R. Aschenbrenner, L. Thomas, and H. Reichl, 1998 IEEE/CPMT Berlin Intl Manufacturing Tech. Symp. Proceeding, p.156, 1998.
[ASC] A. Ascoli, J. Inst. Metals, 89, p.218, 1961.
[BAD] W. G. Bader, Welding Research Supplement, 28, p.551s, 1969.
[BAK] H. Baker (ed.), ASM Handbook v.3: Alloy Phase Diagrams, ASM, Materials Park, OH, 1992.
[BAL] C. Baldwin and T. E. Such, Tran. Institute Metal Finish., 46, p.73, 1968.
[BAN1] S. Banks, Electronic Packaging & Production, p.69, June 1995.
[BAN2] K. Banerji, R. F. Darveaux, P. K. Liaw, R. Viswanathan, K. L. Murty, E. P. Simonen, and D. Frear, Microstructures and Mechanical Properties of Aging Materials, TMS, Warrendale, Pa., p.431, 1993.
[BLA] H. D. Blair, T. Y. Pan, and J. M. Nicholson, Proc. 48th IEEE Electron. Comp. Tech. Conf., p.259, 1998.
[BOL] S. C. Bolton, A. J. Mawer, and D. Mammo, Intl. J. Microcircuit and Electronic Packaging, 18, p.109, 1995.
[BRA] E. Bradley and K. Banerji, Proc. 45th IEEE Electron. Comp. Tech. Conf., p.1028, 1996.
[BUL] R. A. Bulwith and C. A. Mackay, Weld. J., 164, p.86s, 1987.
[CAN] C. T. Candland and H. B. Vanfleet, Phys. Rev., B7, p.575, 1973.
[CHE] C. Chen, C. E. Ho, A. H. Lin, G. L. Luo, and C. R. Kao, J. Electron. Maters., 29, p.1200, 2000.
[DAE] D. H. Daebler, SMT, October 1991.
[DUC] R. Duckett and M. L. Ackroyd, Electroplat. Met. Finish., 29, p.13, 1976.
[DYN] B. F. Dyson, J. Appl. Phys., 37, p.2375, 1966.
[ENW] S. Enwright, Electronic Packaging & Production, p.68, June 1998.
[FOS] F. G. Foster, ASTM STP 319, p.13, 1962.
[FRE] D. R. Frear, J. W. Jang, J. K. Lin, and C. Zhang, JOM, 53, p.28, 2001.
[FUR] S. Furuseth and H. Fjellvag, ACTA Chemica Scandinavica, Series A: Physical and Inorganic Chemistry, 40A, p.695, 1986.
[GAN] A. Ganguluee, G. C. Das, and M. B. Bever, Metallurgical Transactions, 4, p.2063, 1973.
[GLA1] J. Glazer, Inter. Mater. Rev., 40, p.65, 1995.
[GLA2] J. Glazer, Journal of SMT, October 1991.
[GUR] D. Gur and M. Bamberger, Acta Mater., 46, p.4917, 1998.
[HAR] C. A. Harper (ed.), Electronic Packaging and Interconnection Handbook, McGraw-Hill, New York, 1991.
[HEI] H. Heinzel and K. E. Saeger, Gold Bull., 9, p.7, 1976.
[HO1] C. E. Ho, Y. M. Chen, and C. R. Kao, J. Electron. Maters., 28, p.1231, 1999.
[HO2] C. E. Ho, S. Y. Tsai, and C. R. Kao, IEEE Transactions on Advanced Packaging, 24, p.493, 2002.
[HRI] V. F. Hribar, J. L. Bauer, and T. P. O’Donnell, Third Int. SAMPE Electronics Conf., p.1187, 1989.
[HUM1] G. Humpston and D. M. Jacobson, Principles of Soldering and Brazing, ASM, Materials Park, OH, 1996.
[HUM2] G. Humptson and D. L. Davies, Mater. Sci. and Tech., 1, p.433, 1985.
[HUN1] S. C. Hung, P. J. Zheng, S. C. Lee, Proc. 24th IEMT, p.23, 1999.
[HUN2] B. Huntington and C. K. Hu, Materials Science Forum, 1, p.29, 1984.
[IPC] IPC Roadmap for Assembly of Lead-Free Electronics, 4th draft, IPC, Northbrook, IL, June 2000.
[JAC] D. M. Jacobson and J. Jumpston, Gold Bull., 22, p.9, 1989.
[KAN] S. K. Kang, R. S. Rai, and S. Purushothaman, J. Electron. Maters., 25, p.1113, 1996.
[KAY] P. J. Kay and C. A. Mackay, Trans. Inst. Met. Finish., 154, p.68, 1976.
[KIM1] P. G. Kim and K. N. Tu, Maters. Chem. and Phys., 53, p.165, 1998.
[KIM2] P. G. Kim and K. N. Tu, J. Appl. Phys., 80, p.3822, 1996.
[KOR] T. M. Korhonen, P. Su, S. J. Hong, M. A. Korhonen, and C.-Y. Li, J. Electron. Maters., 29, p.1194, 2000.
[KRA] P. A. Kramer, J. Glazer, and J. W. Morris, Jr., Metall. and Mater. Trans., 25A, p.1249, 1994.
[KUB] R. Kubiak, J. Less-Common Met., 80, p.53, 1981.
[KUL] K. Kulojärvi, V. Vuorinen, and J. K. Kivilahti, Microelectronics International, 15, issue 2, p.20, 1998.
[LAU] J. K. Lau (ed.), Ball Grid Array Technology, McGraw-Hill, New York, 1995.
[LIU] C. M. Liu, M. S. Thesis, National Central University, Chungli City, Taiwan, 2000.
[LEE1] N. C. Lee, Proc. of Nepcon West, Anaheim, CA, February 1997.
[LEE2] J. H. Lee, J. H. Park, Y. H. Lee, and Y. S. Kim, J. Mater. Res., 16, p.1249, 2001.
[LEE3] J. H. Lee, J. H. Park, D. H. Shin, Y. H. Lee, and Y. S. Kim, J. Electron. Maters., 30, p.1138, 2001.
[LIN1] K. L. Lin and C. J. Chen, J. Mater. Sci. Materials in Electronics, 7, p.397, 1996.
[LIN2] C. H. Lin, M.S. Thesis, National Tsing-Hua University, Hsing-Chu, Taiwan, 2001.
[MEI1] Z. Mei, P. Callery, D. Fisher, F. Hua, and J. Glazer, Adv. Electronic Pack., 2, p.1543, 1997.
[MEI2] Z. Mei, M. Kaufmann, A. Eslambolchi, and P. Johnson, Proc. 48th IEEE Electron. Comp. Tech. Conf., p.952, 1998.
[MEI3] Z. Mei, P. Johnson, M. Kaufmann, and A. Eslambolchi, Proc. 49th IEEE Electron. Comp. Tech. Conf., p.125, 1999.
[MEI4] S. N. Mei, J. Shi, and H. B. Huntington, J. Appl. Phys., 62, p.444, 1987.
[MIN1] A. M. Minor and J. W. Morris, Jr., Metall. and Mater. Trans., A31, p.798, 2000.
[MIN2] A. M. Minor and J. W. Morris, Jr., J. Electron. Maters., 29, p.1170, 2000.
[MIY] T. Miyazaki and K. Terashima, Proc. 19th IEMT, p.333, 1994.
[MOO] K.-W. Moon, W. J. Boettinger, U. R. Kattner, F. S. Biancaniello, and C. A. Handwerker, J. Electron. Maters., 29, p. 1122, 2000.
[MUL] W. A. Mulholland and D. L. Willyard, Welding J. Res. Suppl., 54, p.466s, 1974.
[NCM] Lead-Free Solder Project Final Report, NCMS Report 0401RE96, National Center for Manufacturing Sciences, 3025 Boardwalk, Ann Arbor, Michigan, 1997.
[NEM] Meeting Report, Workshop on Modeling and Data Needs for Lead-Free Solders; National Electronics Manufacturing Initiative (NEMI); New Orleans, LA, February 15 2001.
[NOW] H. Nowotny and K. Schubert, Zeitschrift Fuer Metallkunde, 37, p. 23, 1946.
[PUT] K. Puttlitz, IEEE Trans. Compon. Hybr. & Manufact. Tech. 13, p.647, 1990.
[PHI] J. Philibbert, S. J. Rothman, and D. Lazarus, Atom Movements: Diffusion and Mass Transport in Solids, Avenue du Hoggar and Zone Industrielle de Courtaboeuf, Les Ulis Cedex, 1988.
[RAH] A. Rahn (ed.), The Basics of Soldering, John Wiely & Sons, New York, 1993.
[SAL] G. Salvago and P. L. Cavallotti, Plating, 59, p.665, 1972.
[SCH] K. Schubert, H. Breimer, and R. Gohle, Z. Metallkde., 50, p.146, 1959.
[SHE] P. Shewmon, Diffusion in Solids (2nd edition), McGraw-Hill, 1963.
[SHI1] L. C. Shiau, C. E. Ho, and C. R. Kao, Proceedings of the International Conference on Advances in Packaging (Eds. S. Wong, J. HL Pang, Z. Wang, and A. Lu) Gintic, Singapore, p.99, 2001.
[SHI2] B. L. Shiau, M. S. Thesis, National Central University, Chungli City, Taiwan, 2000.
[TAO] W. H. Tao, C. Chen, C. E. Ho, W. T. Chen, and C. R. Kao, Chem. of Maters., 13, p.1051, 2001.
[THW] C. J. Thwaites, Electroplat. Met. Finish., 26, p.10, 1973.
[UEN] K. Uenishi, T. Saeki, Y. Kohara, K. F. Kobayashi, I. Shoji, M. Nishiura, and M. Yamamoto, Mater. Trans., 42, p.756, 2001.
[TU] K. N. Tu and K. Zeng, Materials Science and Engineering, R34, p.1, 2001.
[VAN] J. E. A. M. Van Den Meerakker, J. Appl. Electronchem., 11, p.395 1981.
[VIA] P. T. Vianco, Circuit World, 25/1, p.6, 1998.
[VIN] J. H. Vincent and G. Humpston, GEC Journal of Research, 11, p.76, 1994.
[WAR] W. K. Warburton and D. Turnbull, Diffusion in Solids-Recent Developments, ed. A. S. Nowick and J. J. Burton, Academic Press, NY, p.171, 1975.
[WAS1] R. J. Wassink, Soldering in Eelectronics, Electrochemical Pub. Ltd., p.99, 1984.
[WAS2] R. J. Wassink, Soldering in Eelectronics, 2nd ed., Electro-chemical Pub. Ltd., p.523, 1989.
[WIL] R. N. Wild, NEPCON, p.198, 1968.
[YOS] F. G. Yost, Gold Bull., 10, p.94, 1977.
[YOU] M. Yousuf, P. C. Sahu, H. K. Rajagopalan, and K. G. Rajan, J. Phys. F: Metal Physics, 16F, p.373, 1986.
[ZRI2] A. Zribi, R. R. Chromik, R. Presthus, J. Clum, K. Teed, L. Zavalij, J. DeVita, J. Tova, and E. J. Cotts, Proc. 49th IEEE Electron. Comp. Tech. Conf., p.451, 1999.
[ZRI2] A. Zribi, R. R. Chromik, R. Presthus, K. Teed, L. Zavalij, J. DeVita, J. Tova, E. J. Cotts, J. Clum, R. Erich, A. Primavera, G. Westby, R. J. Coyle, and G. M. Wenger, IEEE Electron. Comp. Tech., 23, p.383, 2000.
[ZAK] E. Zakel, IEEE Transactions on Components, Packaging and Manufacturing Technology, 17, p.569, 1994.
[白蓉生] 白蓉生, 電路板會刊, 第15期, p.4, 2002。
[彭錢塘] 彭錢塘, 電路板會刊, 第12期, p.75, 2001。
[杜經寧] 杜經寧, 高級電子元件材料研討會報告, 國立交通大學材料科學與工程學系, 12月14日, 2001。
指導教授 高振宏(C. R. Kao) 審核日期 2002-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明