博碩士論文 86322051 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:22 、訪客IP:3.133.12.172
姓名 譚志豪(Chih-Hao Tan)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 黏土壓縮與壓密行為之研究
(The Behavior of Compression and Consolidation for Clays)
相關論文
★ 土壤液化評估模式之不確定性★ 廣域山崩之統計與最佳化分析-以莫拉克風災小林村鄰近地區為例
★ 砂土中模型基樁之單向反覆軸向載重試驗★ 邊坡穩定分析方法之不確定性
★ 不同試驗方法對黏土壓縮與壓密性質之影響★ 台北盆地黏性土壤不排水剪力強度之研究
★ 土壤液化引致地盤永久位移之研究★ 台北盆地地盤放大特性之研究
★ 水力回填煤灰之動態特性★ 全機率土壤液化分析法
★ 集集地震液化土之穩態強度★ 現地土壤之液化強度與震陷特性
★ 地震規模修正因子之探討★ 鯉魚潭水庫大壩受震反應分析
★ 全機率土壤液化評估法之研究★ 基樁軸向承載之依時行為
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 摘 要
本研究針對黏土壓縮與壓密行為進行廣泛之研究,根據研究成果具體提出:(1)試驗方法對粘性土壤壓縮與壓密參數之影響、(2)尺寸效應對黏土壓縮與壓密行為之影響、(3)時間座標尺度對解釋次壓縮行為之影響、以及(4)超載預壓對黏土長期沉陷之影響等前人較少提及之研究結果。本研究亦規劃執行不同尺寸試體之壓密試驗,探究尺寸效應對黏土壓縮及壓密行為之影響,藉以驗證小尺寸試體之壓縮與壓密參數是否可反應現地土層之壓密沉陷行為。
此外,為掌握沉陷分析時施工作業對土層壓密行為之影響,本研究發展一套能考慮垂直向與徑向壓密、非線性土壤參數、軟弱土層大變形、荷載隨時間變化、不規則形狀荷載、樁-土複合地盤沉陷行為、點井抽水與解水、以及井阻抗與塗抹效應等現地施工狀況之多功能壓密沉陷數值程式,並透過實際之沉陷案例分析累積參數之選取經驗,而不同種類土壤壓縮與壓密參數之率定資料可供各界處理類似沉陷問題時之參考。
摘要(英) ABSTRACT
Based on the results of this study we achieved several important conclusions such as the discrepancies of the compression and consolidation parameters under the different test conditions from the conventional consolidation test, the effect of size of specimens on the compression and consolidation parameters of clays, the effect of time scale on the interpretation of secondary compression for clays, and the effect of the amount and the duration of surcharge on the long-term settlement of clays.
This study also carried out the consolidation tests for specimens of different size to investigate the size effect of compression and consolidation parameters. The results of the tests are not only to verify whether the compression and consolidation parameters of 2 cm specimen can be applied to predict the consolidation settlement of a thick soil layer in the field, but also to feedback the numerical model.
Furthermore, the construction factors, such as nonlinear parameters, large strain, time-varying load, loading and unloading of arbitrary foundation shape, the settlement of the composite ground reinforced by piles, dewatering and recharging of ground water, and the smear effect and the well resistance of prefabricated vertical drains, are simulated to improve the abilities of the numerical program. The verification of the numerical model with other closed-form solutions or numerical results was performed. Furthermore, the statistical correlations of the compression and consolidation parameters with their physical indexes for many alluvial clays and the experiences of settlement analysis obtained from several engineering projects were also proposed.
關鍵字(中) ★ 壓縮
★ 壓密
★ 尺寸效應
★ 時間尺度
★ 超載預壓
關鍵字(英) ★ compression
★ consolidation
★ size effect
★ time scale
★ surcharge
論文目次 目 錄
表目錄
圖目錄
第一章 緒論
1.1 研究動機與目的
1.2 研究內容與流程
1.3 論文架構
第二章 文獻回顧
2.1 沉陷分析模式之回顧
2.1.1 總沉陷量估算模式
2.1.2 沉陷速率推估模式
2.2 壓密試驗之回顧
2.2.1 等應變速率試驗
2.2.2 控制梯度試驗
2.2.3 連續加載試驗
2.3 黏土壓縮與壓密性質之回顧
2.3.1 預壓密應力
2.3.2 壓縮指數與再壓指數
2.3.3 次壓縮指數
2.3.4 壓密係數
2.3.5 綜合討論
2.4 現有數值程式之回顧
2.4.1 SETTLE程式之回顧
2.4.2 CONSOL程式之回顧
2.4.3 RAMP程式之回顧
2.4.4 綜合討論
2.5 影響壓密沉陷預測準確性之主要因素
2.5.1 分析模式之使用限制
2.5.2 現地因素之影響
2.5.3 土壤參數之選取差異
第三章 黏土壓縮與壓密參數之探討
3.1 試驗方法對壓縮與壓密參數之影響
3.1.1 壓縮參數之整理
3.1.2 壓密參數之整理
3.1.3 綜合討論
3.2 尺寸效應對壓縮與壓密行為之影響
3.2.1 尺寸效應之爭論
3.2.2 側壁摩擦力之影響評估
3.2.3 試驗內容及設備
3.2.4 試驗結果
3.2.5 尺寸效應之探討
3.3 時間座標尺度對解釋次壓縮行為之影響
3.3.1 對數時間座標上之非線性次壓縮現象
3.3.2 時間座標尺度之影響
3.3.3 土壤長期次壓縮沉陷之估算
3.3.4 綜合討論
3.4 超載比與超載時間最佳化之探討
3.4.1 超載工法之原理
3.4.2 超載預壓對土壤沉陷行為之影響
3.4.3 室內超載預壓試驗
3.4.4 試驗結果與分析
3.4.5 工程應用之探討
第四章 壓密沉陷數值程式之開發、模擬與驗證
4.1 數值程式之開發
4.1.1 有限差分法
4.1.2 垂直向壓密方程式之開發
4.1.3 徑向壓密方程式之開發
4.2 數值程式之驗證
4.2.1 垂直向壓密程式之解析解驗證
4.2.2 徑向壓密程式之理解析驗證
4.2.3 層狀系統之現有數值解驗證
4.2.4 綜合討論
4.3 施工作業之數值模擬
4.3.1 非線性土壤參數
4.3.2 軟弱土層大變形
4.3.3 荷載隨時間變化之模擬
4.3.4 不同形狀荷載之模擬
4.3.5 樁-土複合地盤沉陷行為之模擬
4.3.6 點井抽水與解水之模擬
4.3.7 井阻抗與塗抹效應之模擬
第五章 現地沉陷案例分析
5.1 捷運淡水線北投機廠排水預壓土質改良案例
5.1.1 工程概述
5.1.2 地質概況
5.1.3 簡化分析剖面
5.1.4 參數影響評估
5.1.5 最佳化分析結果
5.2 士林焚化廠排水預壓土質改良案例
5.2.1 工程概述
5.2.2 地質概況
5.2.3 簡化分析剖面
5.2.4 參數影響評估
5.2.5 最佳化分析結果
5.3 基隆河截彎取直金泰段排水預壓土質改良案例
5.3.1 工程概述
5.3.2 地質概況
5.3.3 簡化分析剖面
5.3.4 參數影響評估
5.3.5 最佳化分析結果
5.4 中油高雄大林廠儲槽試水案例
5.4.1 工程概述
5.4.2 地質概況
5.4.3 簡化分析剖面
5.4.4 分析結果
5.5 台塑麥寮油槽區填土預壓改良案例
5.5.1 工程概述
5.5.2 地質概況
5.5.3 簡化分析剖面
5.5.4 分析結果
5.6 台電台中火力發電廠灰塘區砂樁改良案例
5.6.1 工程概述
5.6.2 地質概況
5.6.3 煤灰之物理與化學特性
5.6.4 煤灰之壓縮與壓密特性
5.6.5 水力回填煤灰之土質改良建議
第六章 黏土壓縮與壓密參數之整理
6.1 土壤壓縮及壓密參數與基本物理指數性質之關係6.1.1 壓縮參數之整理
6.1.2 壓密參數之整理
6.1.3 綜合評述
6.2 土壤壓縮與壓密參數之選取建議
第七章 結論與建議
7.1 結論
7.2 建議
參考文獻
參考文獻 參考文獻
1. Aboshi, H., “An experimental investigation on the similitude in the one-dimensional consolidation of a soft clay including the secondary creep settlement”, Proc. 8th ICSMFE, Vol. 4, pp. 81-83 (1973).
2. Akai, K., Kamon, M., Sano, I. and Soga, K., “Long-term consolidation characteristic of diluvial clay in Osaka Bay”, Soils and Foundations, Vol. 31, No. 4, pp. 61-74 (1991).
3. Balasubramaniam, A. S., Gurung, S. B., Kusakabe, O. and Kim, S. R., “On the plastic volumetric strain of Bangkok clay”, Proc. of the 11th Southeast Asian Geotechnical Conference, pp. 73-78, Singapore (1993).
4. Barden, L., “Consolidation of clay with non-linear viscosity”, Geotechnique, Vol. 15, pp. 345-362 (1965).
5. Barron, R. A., “Consolidation of fine-grained soils by drain wells”, Transactions, ASCE, Vol. 113, pp. 718-754 (1948).
6. Bergado, D. T., Asakami, H., Alfaro, M. C. and Balasubramaniam, A. S., “Smear effects of vertical drains on soft Bangkok clay”, Journal of Geotechnical Engineering, Vol. 117, No. 10, pp. 1509-1530 (1991).
7. Berry, P. L., “Application of consolidation theory for peat to the design of a reclamation schedule by preloading”, Quarterly J. Eng. Geology, Vol. 16, pp. 103-112 (1983).
8. Buisman, A. S. K., “Results of long duration settlement tests”, Proc. 1st Int. Conf. Soil Mech. Found. Eng., Cambridge, pp. 100-106 (1936).
9. Casagrande, A., “The determination of the preconsolidation load and its practical significance”, Proc. 1st Int. Conf. Soil Mech. Found. Eng., Cambridge, Vol. 3, pp. 60-64 (1936) .
10. Crawford, C. B. and Sutherland, J. G., “The Empress Hotel, Victoria, British Columbia. sixty-five years of foundation settlement”, Canadian Geotechnical Journal, Vol. 8, pp. 77-93 (1971).
11. Davis, E. H., and Poulos, H. G., “The use of elastic theory for settlement prediction under three-dimensional conditions”, Geotechnique, Vol. 18, pp. 67-91 (1968).
12. Duncan, J. M., “Limitations of Conventional Analysis of Consolidation Settlement”, Journal of Geotechnical Engineering, ASCE, Vol. 119, No. 9, pp. 1333-1359 (1993).
13. Olson, R. E., “Settlement of embankments on soft clay”, Journal of Geotechnical and Geoenvironmental engineering, ASCE, Vol. 124, No. 8, pp.659-669 (1998).
14. Dhowian, A. W. and Edil, T. B., “Consolidation behavior of peats”, Geotech. Testing J., Vol. 3, No. 3, pp. 105-114 (1980).
15. Feda, J., Creep of Soils and Related Phenomena, Elsevier, New York, pp. 276-292 (1992).
16. Fox, P. J., “C?/Cc concept applied to compression of peat”, J. Geotech. Eng., ASCE, Vol. 118, No. 8, pp. 1256-1263 (1992).
17. Fox, P. J., and Edil, T. B., “Effects of stress and temperature on secondary compression of peat”, Can. Geotech. J., Vol. 33, pp. 405-415 (1996).
18. Frydman, S., Komornik, U. and Komornik, A., “Geotechnical properties of Israeli coastal clays”, Proc. of the 9th Asian Regional Conference on Soil Mechanics and Foundation Engineering, pp. 137-142, Bangkok, Thailand (1991).
19. Gutub, M. Z. A. and Khan, A. M., “Drainage and compressibility characteristics of Madinah clay with sand drains”, Proc. of the 11th southeast Asian Geotechnical Conference, pp. 349-355, Singapore (1993).
20. Hansbo, S., “Consolidation of clay, with special reference to influence of vertical sand drains”, Thesis, Swedish Geotech. Inst. Proc. No. 18 (1960).
21. Hansbo, S., “Influence of mobile particles in soft clay on permeability”, Proc. Int. Symp. Soil Structure, Gothenburg, pp. 132-135 (1973).
22. Hansbo, S., “Consolidation of clay by band-shaped prefabricated drains”, Ground Engineering, Vol. 12, No. 5, pp. 16-25,(1979).
23. Hansbo, S., “Consolidation of fine-grained soils by prefabricated drains”, Proc. 10th Int. Conf. Soil Mech., Stockholm, Vol. 3, Paper 12/22, pp. 677-682 (1981).
24. Hobbs, N. B., “Mire morphology and the properties and behavior of some british and foreign peats”, Quarterly J. Eng. Geology, Vol. 19, No. 1, pp. 7-80 (1986).
25. Holtz, R. D. and Kovacs, W. D., An Introduction to Geotechnical Engineering, Prentice-Hall, New Jersey (1981).
26. Hossain, D., “Discussion: Limitations of conventional analysis of consolidation settlement”, Journal of Geotechnical Engineering, Vol. 121, pp. 514-515 (1995).
27. Katagiri, G., “The relationship between Cc and C? of clay”, Proc. of the 11th Southeast Asian Geotechnical Conference, pp. 121-124, Singapore (1993).
28. Lo, K. Y., “Secondary compression of clays”, J. Soil Mech. Found. Div., ASCE, Vol. 87, SM4, pp. 61-87 (1961).
29. Mesri, G., “Coefficient of secondary compression”, Journal of Soil Mechanics and Foundations Division, ASCE, Vol. 99, No. SM1, pp. 123-137 (1973).
30. Mesri, G., and Rokhsar, A., “Theory of consolidation for clays”, Journal of Geotechnical Engineering Division, ASCE, Vol. 100, No. GT8, pp. 889-904 (1974).
31. Mesri, G., Rokhsar, A. and Bohor, B. F., “Composition and compressibility of typical samples of Mexico city clay”, Geotechnique, Vol. 25, No. 3, pp. 527-554 (1975).
32. Mesri, G., and Godlewski, P.M., “Time- and stress-compressibility interrelationship”, Journal of Geotechnical Engineering Division, ASCE, Vol. 103, No. GT5, pp. 417-430 (1977).
33. Mesri, G. and Choi, Y. K., Discussion on “Excess pore water pressure and preconsolidation effect developed in normally consolidated clay of some age”, by Yokitoshi, M., Soils and Foundations, Vol. 20, No. 4, pp. 143-148 (1980).
34. Mesri, G., Stark, T.D ., Ajlouni, M. A., and Chen, C. S., “Secondary compression of peat with or without surcharging”, J. Geotech. Geoenviron. Eng., ASCE, Vol. 123, No. 5, pp. 411-421 (1997).
35. Nagaraj, T. S. and Srinivasa Murthy, B. R., “Technical note: Prediction of the preconsolidation pressure and recompression index of soils”, Geotechnical Testing Journal, Vol. 8, No. 4, pp. 199-202 (1985).
36. Narasimha Raju, P. S. R., Pandian, N. S. and Nagaraj, T. S., “Analysis and estimation of the coefficient of consolidation”, Geotechnical Testing Journal, Vol. 18, No. 2, pp. 252-258 (1995).
37. Newland, P. L., and Allely, B. H., “A study of the consolidation characteristics of a clay”, Geotechnique, Vol. 10, pp. 62-74 (1960).
38. Olson, R. E., “Technical note: Consolidation under time dependent loading”, Journal of Geotechnical Engineering Division, ASCE, Vol. 103, No. GT1, pp. 55-60 (1977).
39. Olson, R. E., and Ladd, C. C., “One-dimensional consolidation problems”, Journal of Geotechnical Engineering Division, ASCE, Vol. 105, No. GT1, pp. 11-30. (1979)
40. Quigley, R. M. and Ogunbadejo, T. A., “Clay layer fabric and oedometer consolidation of a soft varved clay”, Canadian Geotechnical Journal, Vol. 9, pp 165-175 (1972).
41. Raymond, G. P. and Wahls, H. E., “Estimating 1-dimensional consolidation, including secondary compression, of clay loaded from overconsolidated to normally consolidated state”, Special Report 163, Transportation Research Board, Washington, D.C., pp. 17-23 (1976).
42. Schmertmann, J. H., “The undisturbed consolidation behavior of clay”, Transactions, ASCE, Vol. 120, pp. 1201-1227 (1955).
43. Sirdharan, A., Rao, S. M. and Murthy, N. S., “Compressbility behaviour of homoionized bentonites”, Geotechnique, Vol. 36, No. 4, pp. 551-564 (1986).
44. Sridharan, A., Prakash, K., and Asha, S. R., “Consolidation behavior of soils”, Geotechnical Testing Journal, Vol. 18, No. 1, pp. 58-68 (1995).
45. Sridharan, A., Prakash, K., and Asha, S. R., “Consolidation behavior of clayey soils under radial drainage”, Geotechnical Testing Journal, Vol. 19, No. 4, pp. 421-431 (1996).
46. Tavenas, F., Jean., P., Leblond, P. and Leroueil, S., “The permeability of natural soft clays. part Ⅱ. permeability characteristics”, Canadian Geotechnical Journal, Vol. 20, No. 4, pp. 645-660 (1983).
47. Taylor, D. W., Fundamentals of Soil Mechanics, Wiley, New York (1948).
48. Terzaghi, K., Theoretical Soil Mechanics, Wiley, New York (1943).
49. Todo, H., Sagae, T. and Adachi, K., “Compressibility model for highly sensitive Singapore clay”, Proc. of the 11th Southeast Asian Geotechnical Conference, pp. 251-256, Singapore (1993).
50. Tsuchida, T., “A new concept of e~logp relationship for clays”, Proc. of the 9th Asian Regional Conference on Soil Mechanics and Foundation Engineering, pp. 87-90, Bangkok, Thailand (1991).
51. Tsukada, Y. and Yasuhara, K., “Scale effects in one-dimensional consolidation of clay”, Proceedings of the International Symposium on Compression and Consolidation of Clayey Soils, Japan, Vol. 1, pp. 211-226 (1995).
52. Wei, J., Ho, S. K. and Lourdesamy, I., “Use of vertical drains to improve soft clays at the Woodlands Reclamation Project, Singapore”, Proc. of the 11th southeast Asian Geotechnical Conference, pp. 421-427, Singapore (1993)
53. 劉醇棟,「基隆河黏土垂直排水帶行為及壓密性質之研究」,碩士論文,國立中央大學土木工程學系,中壢,台灣 (1998)。
54. 游明縑,「不同試驗方法對黏土壓縮與壓密性質之影響」,碩士論文,國立中央大學土木工程學系,中壢,台灣 (2000)。
55. 譚志豪、黃俊鴻、方仲欣,「基隆河黏土垂直排水帶案例之反算分析」,第八屆大地工程研討會,屏東,台灣 (1999)。
56. 張光永、吳玉山、李彰明,「超載預壓法閾值問題的室內試驗研究」,岩土力學,第20卷,第1期,第78-83頁 (1999)。
57. 曾國熙等人,地基處理手冊,中國建築工業出版社,第45-119頁 (1988)。
58. 許全福,數值分析(第五版),東華書局,台北,台灣 (1995)。
指導教授 黃俊鴻(Jin-Hung Hwang) 審核日期 2002-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明