博碩士論文 86323016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:3.233.217.242
姓名 胡朝彰(Chao-Chang Hu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 雷射加熱提拉法生長釔鐵柘榴石晶纖之研究
(YIG crystal growth using LHPG method)
相關論文
★ 鋰鋁矽酸鹽之負熱膨脹陶瓷製程★ 鋰鋁矽酸鹽摻鈦陶瓷之性質研究
★ 高功率LED之熱場模擬與結構分析★ 干涉微影之曝光與顯影參數對週期性結構外型之影響
★ 週期性極化反轉鈮酸鋰之結構製作與研究★ 圖案化藍寶石基板之濕式蝕刻
★ 高功率發光二極體於自然對流環境下之熱流場分析★ 液珠撞擊熱板之飛濺行為現象分析
★ 柴式法生長氧化鋁單晶過程最佳化熱流場之分析★ 柴式法生長氧化鋁單晶過程晶體內部輻射對於固液界面及熱應力之分析
★ 交流電發光二極體之接面溫度量測★ 柴氏法生長單晶矽過程之氧雜質傳輸控制數值分析
★ 泡生法生長大尺寸氧化鋁單晶降溫過程中晶體熱場及熱應力分析★ KY法生長大尺寸氧化鋁單晶之數值模擬分析
★ 外加水平式磁場柴氏法生長單晶矽之熱流場及氧雜質傳輸數值分析★ 大尺寸LED晶片Efficiency Droop之光電熱效應研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 由於近來網際網路的發達,促使具有寬頻特性的光纖通訊蓬勃發展,而其被動元件如光隔離器、光連結器和光纖耦合器等市場需求也日益增加,釔鐵柘榴石因具有磁性及磁光法拉第效應的特性,常使用在光隔離器上,阻止光在傳輸過程中,因反射干擾原光源,造成不穩定,或衰減入射光振幅,影響光纖傳輸品質。因此,釔鐵柘榴石晶體的生長相當具有研究價值。本實驗使用雷射加熱提拉法(LHPG, laser heated pedestal growth method)對釔鐵柘榴石(YIG, Y3Fe5O12)進行晶體生長實驗,此長晶法為浮區式(floating zone)長晶法的一種,主要是藉由表面張力支撐熔區,一般材料在熔區形成時,為一穩定的熔區,然而YIG在熔區形成的瞬間,熔區即開始產生上下振盪的情形,此種現象稱為非穩態振盪性熱張力對流,振盪性的熔區會導致晶體不易生長,因此欲長出YIG單晶,則須對其熔區流場加以研究,探討流場振盪的原因,並找出抑制其振盪的方法。然而欲觀察熔液振盪性熱張力對流的現象並不容易,因此分析振盪性熱張力對流所導致的熔區上下振盪對晶體生長界面型態(morphology)的影響,對於振盪性熱張力對流的探討有很大的助益;其它如長晶參數對晶體結構與組成分佈的關係,及使用不同配比之陶瓷棒生長YIG,探討非化學計量組成對長晶熔區液體物性的影響,及對固液界面之影響,皆對了解YIG晶體的生長機制有很大的幫助。另外,由於YIG為鐵磁性材料,因此本論文也針對不同長晶參數下所獲得的晶體進形磁性檢測,依據不同組成磁化值亦不同的原理分析材料組成與長晶參數的關係。
摘要(英) The growth of the yttrium iron garnet (YIG, Y3Fe5O12) crystals have been studied widely because of its magneto-optical properties, such as Faraday rotation applied to isolators. But due to its incongruent peritectic reaction and unsteady oscillatory molten zone, it is difficult to grow by float zone method. In this study, the laser heated pedestal growth (LHPG) was applied to growing stoichiometric YIG single crystal fibers. The effect of growth parameters on microstructures and compositions of YIG crystal fibers were investigated. In order to realize a virtual mechanism for growing stoichiometric YIG crystals using the LHPG method, various ratio off-stoichiometric YIG ceramics were used as feed and seed, and were grown at different conditions. In additions, the effect of the oscillatory thermocapillary convection on the morphology of growth interface is discussed. The magnetic properties of YIG crystals were measured in order to analyze the relationship between compositions and growth parameters. Finally, the crack analysis is helpful to obtain the maximum axial temperature gradient, under which the crack will be avoided. Through this study, we could obtain the high-quality YIG single crystal fibers by well controlling the growth parameters.
關鍵字(中) ★ 釔鐵柘榴石
★ 雷射加熱提拉法
★ 晶體生長
關鍵字(英) ★ LHPG
★ crystal growth
★ YIG
論文目次 中文摘要……………………………………………………………………………..Ⅰ
英文摘要………………………………………………………………………….......II
致謝…………………………………………………………………………………..III
目錄.................................................................IV
表目錄………………………………………………………………………………VII
圖目錄……………………………………………………………………………...VIII
符號說明………………………………………………………………………….. .XII
第一章 緒論…………………………………………………………………………1
1.1前言………………………………………………………………………………..1
1.2雷射加熱提拉法…………………………………………………………………..1
1.3研究背景…………………………………………………………………………..2
1.3.1 材料簡介……………………………………………………………………..2
1.3.2 文獻回顧……………………………………………………………………..4
1.3.3 研究目標……………………………………………………………………..6
1.4研究主題…………………………………………………………………………..6
圖………………………………………………………………………………………8
第二章 材料製程與實驗方法……………………………………………………..13
2.1粉末配製與陶瓷製程……………………………………………………………13
2.1.1 粉末配製……………………………………………………………………14
2.1.2 陶瓷製作……………………………………………………………………15
2.1.3 陶瓷棒的準備………………………………………………………………15
2.2 晶體生長設備與方法…………………………………………………………...16
2.2.1 儀器介紹……………………………………………………………………16
2.2.2 晶體生長……………………………………………………………………17
2.3 陶瓷與晶體檢測………………………………………………………………...18
圖……………………………………………………………………………………..20
第三章 製程參數對YIG晶纖之影響……………………………………………28
3.1 提拉速度的影響………………………………………………………………...28
3.1.1 提拉速度對晶體組成的影響………………………………………………28
3.1.2 提拉速度對晶體結構的影響………………………………………………29
3.2 熔區振盪對生長界面的影響…………………………………………………...31
3.3 熱場的影響……………………………………………………………………...32
3.3.1 熱場對晶體生長的影響……………………………………………………32
3.3.2 熱場對熔區長度的影響……………………………………………………33
3.4 晶體外觀………………………………………………………………………...35
3.5 晶體檢測………………………………………………………………………...36
3.6 結論……………………………………………………………………………...37
圖……………………………………………………………………………………..39
第四章 YIG晶纖生長之機制…………………………………………………….62
4.1 導言.............................................................62
4.2 氧化鐵缺乏的配比之晶纖提拉..……………………………………………….63
4.3 氧化鐵過多的配比之晶纖提拉………………………………………………...64
4.3.1 自我調適與快速固化反應…………………………………………………64
4.3.2 成長界面不穩定……………………………………………………………65
4.4 自我調適長度與配比的關係…………………………………………………...67
4.5 結論……………………………………………………………………………...68
圖表…………………………………………………………………………………..70
第五章 定量分析…………………………………………………………………..78
5.1 導言.............................................................78
5.2 定量分析………………………………………………………………………...78
5.2.1 研究動機與方法……………………………………………………………78
5.2.2 結果與討論…………………………………………………………………79
5.3 赤鐵礦晶纖生長………………………………………………………………...82
5.4 結論……………………………………………………………………………...83
圖表…………………………………………………………………………………..85
第六章 溫度梯度與晶體破裂分析………………………………………………..94
6.1 固區溫度梯度…………………………………………………………………...94
6.1.1 靜態熔解……………………………………………………………………94
6.1.2 不同提拉速度之晶纖生長…………………………………………………97
6.2 晶纖之內應變…………………………………………………………………...99
6.3 結論…………………………………………………………………………….101
圖……………………………………………………………………………………102
第七章 總結論………………………..…………………………………………..109
參考文獻……………………………………………………………………………111
附錄A………………………………………………………………………………118
發表之學術論文……………………………………………………………………120
參考文獻 [1] J. W. Nielsen and E. F. Dearborn, “The growth of single crystals of magnetic garnets”, J. Phys. Chem. Solids, Vol.5, pp.202-207 (1958)
[2] Roger F. Belt, “Etching and X-Ray topography of flux-grown magnetic garnets”, J. Appl. Phys., Vol.40, pp.1644 (1969)
[3] Shirai et al., United States Patent, No. 5898516 (1999)
[4] Hiramatsu et al., United States Patent, No. 6031654 (2000)
[5] Shirai et al., United States Patent, No. 5925474 (1999)
[6] M. M. Fejer, J. L. Nightingale, G. A. Magel, and R. L. Byer, “Laser-heated miniature pedestal growth apparatus for single-crystal optical fibers”, Rev. Sci. Instrum. Vol.55, pp.1791-1796 (1984)
[7] R. S. Feigelson, in: Crystal Growth of Electronic Materials, Ed. E. Kaldis (North-Holland, Amsterdam, 1985) ch. 11, p. 127
[8] 李有璋,光折變晶纖之生長及其特性研究,國立中央大學機械工程研究所博士論文,民國87年
[9] C. B. Carlisle, D. E. Cooper, “An optical isolator for mid-infrared diode lasers”, Optics Communications, Vol. 74, pp.207 (1989)
[10] 余樹楨,晶體之結構與性質,ch.10 空間群對稱,p.171,渤海堂文化事業有限公司,中華民國八十五年十一月一版四刷
[11] C. Y. Tsay, C. Y. Liu, K. S. Liu, I. N. Lin, L. J. Hu and T. S. Yeh, “Low temperature sintering of microwave magnetic garnet materials”, Materials Chemistry and Physics, Vol.79, pp.138-142 (2003)
[12] H. J. Van Hook, “Phase relations in the ternary system Fe2O3-FeO-YFeO3”, Journal of The American Ceramic Society, Vol.45, pp.162 (1962)
[13] M. F. Lazarescu, A. S. Manea and E. Elena, “The influence of the melt cooling rate on the properties of YIG single crystal grown by the flux method from sintered polycrystalline material”, Cryst. Res. Technol., Vol.29, pp.889 (1994)
[14] L. K. Shick, J. W. Nielsen, A. H. Bobeck, A. J. Kurtzig, P. C. Michaelis and J. P. Reekstein, “Liquid phase epitaxial growth of uniaxial garnet films: circuit deposition and bubble propagation”, Appl. Phys. Lett. Vol.18, pp.89-91 (1971)
[15] S. Kimura and I. Shindo, “Single crystal growth of YIG by the floating zone method”, J. Crystal Growth, Vol. 41, pp. 192-198 (1977)
[16] S. Kimura, I. Shindo, K. Kitamura and Y. Mori, “Evaluation of yttrium iron garnet single crystals grown by the floating zone method”, J. Crystal Growth, Vol.44, pp.621 (1978)
[17] S. Kimura, K. Kitamura and I. Shindo, “Growth of rare earth garnet crystals by the floating zone method”, J. Crystal Growth, Vol.65, pp.543 (1983)
[18] D. R. Mason and J. S. Cook, “ Zone Leveling and Crystal Growth of Peritectic Compounds” J. Appl. Phys. Vol. 32, pp. 475 (1961)
[19] S. Kimura and K. Kitamura, “Floating zone crystal growth and phase equilibria: a review”, J. American Ceramic Society, Vol.75, pp.1440 (1992)
[20] T. Sekijima, H. Satoh, K. Tahara, T. Fujii, K. Wakino and M. Okada, “Growth of fibrous YIG single crystals by the self-adjusting solvent FZ method”, J. Crystal Growth, Vol. 193, pp.446 (1998)
[21] H. J. Lim, R. C. DeMattei, R. S. Feigelson and K. Rochford, “Striations in YIG fibers grown by the laser-heated pedestal method”, J. Crystal Growth Vol. 212, pp.191 (2000)
[22] P. A. Clark and W. R. Wilcox, “Influence of graving on thermocapillary convection in floating zone melting of silicon”, J. crystal growth, Vol.50, pp.461 (1980)
[23] F. Preisser, D. Schwabe and A. Scharmann, “Steady and oscillatory thermocapillary convection in liquid columns with free cylindrical surface”, J. Fluid Mech., Vol. 126, pp. 545 (1983)
[24] Y. Kamotani, S. Ostrach and M. Vargas, “Oscillatory thermocapillary convection in a simulated floating-zone configuration”, J. Crystal Growth, Vol. 66, pp. 83 (1984)
[25] R. Velten, D. Schwabe and A. Scharmann, “The periodic instability of thermocapillary convection in cylindrical liquid bridges”, Phys. Fluids A, Vol. 3, pp. 267 (1991)
[26] 黃禎宏,YIG非穩態熱流場研究及晶纖生長,國立中央大學機械工程研究所碩士論文,民國86年
[27] H. Takeuchi, S. Ito, I. Mikami, T. Taniguchi, “Faraday rotation and optical absorption of a single crystal of bismuth-substituted gadolinium iron garnet”, J. Appl. Phys., Vol.44, pp.4789-4790 (1973)
[28] R. C. LeCraw, D. L. Wood, J. F. Dillin, Jr., and J. P. Remeika, ”The optical transparency of yttrium iron garnet in the near infrared”, Applied Physics Letters, Vol.7, pp.27-28 (1965)
[29] R. W. Cooper, W. A. Crossley, J. L. Page and R. F. Pearson, “Faraday rotation in YIG and TbIG”, Journal of Applied Physics, Vol.39, pp.565-567 (1968)
[30] S. Durčok, E. Pollert, Z. Šimša, J. T. Hsu and Y. J. Tsou, “Growth of YIG and BiGdIG single crystals for magnetooptical applications”, Materials Chemistry and Physics, Vol.45 pp.124-129 (1996)
[31] 楊榮中, “柘榴石之反應結研究:緻密化與微觀結構之探討” 清華大學材料科學工程研究所博士論文 (1990)
[32] P. Grosseau, A. Bachiorrini and B. Guilhot, “Preparation of polycrystalline yttrium iron garnet ceramics”, Powder Technology, Vol.93, pp.247-251 (1997)
[33] J. C. Chen, C. Hu and Y. C. Lee, “Temperature dependence of the emittance of LiF and LiNbO3 in the near-infrared spectra”, Jpn. J. Appl. Phys. Vol.37, pp.4070 (1998)
[34] B. W. Delf, A. Green and R. J. Stevens, “Sputtering of yttrium iron garnet (YIG) thin films from a powder mixture of Fe2O3 and Y2O3”, Phys. Stat. Sol. (a), Vol.13, pp.493-498 (1972)
[35] Yong S. Cho, Vernon L. Burdick and Vasantha R. W. Amarakoon, “Hydrothermal preparation and morphology characteristics of Y3Fe5O12”, Journal of American Ceramic Society, Vol.80, pp.1605-1608 (1997)
[36] W. A. Tiller, K. A. Jackson, J. W. Rutter, and B. Chalmers, “The redistribution of solute atoms during the solidification of metals”, Acta Metallurgica Vol.1 pp.428-437 (1953)
[37] B. Chalmers, Principles of Solidification, John Wiley & Sons, Inc. (1964)
[38] C. H. Chun, “Experiments on steady and oscillatory temperature distribution in a floating zone due to the Maragoni convection”, Acta Astronautica Vol.7, pp. 479 (1980)
[39] S. R. Coriell, S. C. Hardy and M. R. Cordes, “Stability of liquid zones”, Journal of Colloid and Interface Science Vol.60, pp. 126-136 (1976)
[40] G. Mason, “An experimental determination of the stable length of cylindrical liquid bubbles”, Journal of Colloid and Interface Science Vol.32, pp.172-176 (1970)
[41] W. G. Pfann and D. W. Hagelbarger, “Electromagnetic suspension of a molten zone”, Journal of Applied Physics Vol.27, pp. 12-18 (1956)
[42] E. Robert and Jr. Green, “Governing equations for the shapes of molten zones”, Journal of Applied Physics Vol.35, pp.1297-1301 (1964)
[43] J. R. Carruthers and M. Grasso, “Studies of floating liquid zones in simulated zero gravity”, Journal of Applied Physics Vol.43, pp. 436-445 (1972)
[44] K. M. Kim, A. B. Dreeben and A. Schujko, “Maximum stable zone length in float-zone growth of small-diameter sapphire and silicon crystals”, Journal of Applied Physics Vol.50, pp. 4472-4474 (1979)
[45] E. J. W. Verwey and P. W. Haayman, “Electronic conductivity and transition point of magnetite (“Fe3O4”)”, Physica Vol.8, pp. 979-987 (1941)
[46] C. C. Hu, J. C. Chen and C. H. Huang, “Effect of pulling rates on the quality of YIG single crystal fibers”, J Crystal Growth Vol.225, pp. 257 (2001)
[47] N. Wang and B. Wei, “ Rapid solidification of undercooled Cu-Ge peritectic alloy”, Acta Mater. Vol.48, pp.1931 (2000)
[48] J. A. Burton, R. C. Prim, and W. P. Slichter, “The distribution of solute in crystals grown from the melt. Part I. theoretical”, J. Chem. Phys. Vol.21, pp.1987-1991 (1953)
[49] J. A. Burton, E. C. Kolb, W. P. Slichter, and J. D. Struthers, “The distribution of solute in crystals grown from the melt. Part II. experimental”, J. Chem. Phys. Vol.21, pp.1991-1996 (1953)
[50] W. W. Mullins and R. F. Sekerka, “Stability of a plannar interface during solidification of a dilute binary alloy”, J. Appl. Phys. Vol.35, pp.444-451 (1964)
[51] J. G. King and W. Williams, “Low-temperature magnetic properties of magnetite”, J. Geophysical Research Vol.105, pp.16427-16436 (2000)
[52] C. A. Domenicali, “Magnetic and electric properties of natural and synthetic single crystals of magnetite”, Phys. Rev. Vol.78, pp.458-467 (1950)
[53] W. Kündig and R. S. Hargrove, “Electron hopping in magnetite”, Solid State Communications Vol.7, pp.223 (1969)
[54] W. C. Hamilton, “Neutron diffraction investigation of the 119oK transition in magnetite”, Phys. Rev. Vol.110, pp.1050-1056 (1958)
[55] R. Aragόn, “ Magnetization and exchange in nonstoichiometric magnetite”, Phys. Rev. B Vol.46, pp.5328 (1992)
[56] P. Vaqueiro, M. A. Lόpez-Quintela, J. Rivas and J. M. Greneche, “Annealing dependence of magnetic properties in nanostructured particles of yttrium iron garnet prepared by citrate gel process”, J. Magn. Magn. Mat. Vol.169, pp.56 (1997)
[57] C. D. Veitch, “Synthesis of polycrystalline yttrium-iron-garnet yttrium-aluminum-garnet from organic precursors”, J. Mater. Sci. Vol.26, pp.6527-6532 (1991)
[58] Z. X. Tang, S. Nafis, C. M. Sorensen, G. C. Hadjipanayis and K. J. Klabunde, “Magnetic properties of aerosol synthesized iron oxide particles”, J. Magn. Magn. Mat. Vol.80, pp.285-289 (1989)
[59] J. C. Brice, “Analysis of the temperature distribution in pulled crystals”, J. Crystal Grwoth Vol.2, pp.395-401 (1968)
[60] M. M. Fefer, “Single crystal fibers: growth dynamics and nonlinear optical interaction” Ph. D thesis in Stanford University (1986)
[61] H. R. Nagendra, M. A. Tirunarayanan, and A. Ramachandran, “Laminar free convection from vertical cylinders with uniform heat flux, Transact. ASME, J. Heat Transf. Vol.92, pp.191-194 (1970)
[62] L. C. Burmeister, Convective Heat Transfer, New York: Wiley, ch12 (1983)
[63] N. P. Padture and G. Klemens, “ Low thermal conductivity in garnet”, J. Am. Ceram. Soc. Vol.80, pp.1018-1020 (1997)
[64] J. C. Brice, “The cracking of Czochralski-grown crystals”, J. Crystal Growth Vol.42, pp.427-430 (1977)
指導教授 陳志臣(Jyh-Chen Chen) 審核日期 2003-7-6
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明