博碩士論文 86324019 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:61 、訪客IP:18.219.232.153
姓名 卓昌正(Chang-Cheng Chuo)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 氮化銦鎵量子井與藍紫光雷射二極體結構之成長與分析
(Growth and Characterization of InGaN/GaN Quantum Well and Blue-violet Laser Diode Structures)
相關論文
★ 磷化銦異質接面雙極性電晶體元件製作與特性分析★ 氮化鎵藍紫光雷射二極體之製作與特性分析
★ 氮化銦鎵發光二極體之研製★ 氮化銦鎵藍紫光發光二極體的載子傳輸行為之研究
★ 次微米磷化銦/砷化銦鎵異質接面雙極性電晶體自我對準基極平台開發★ 以 I-Line 光學微影法製作次微米氮化鎵高電子遷移率電晶體之研究
★ 矽基氮化鎵高電子遷移率電晶體 通道層與緩衝層之成長與材料特性分析★ 磊晶成長氮化鎵高電子遷移率電晶體 結構 於矽基板過程晶圓翹曲之研析
★ 氮化鎵/氮化銦鎵多層量子井藍光二極體之研製及其光電特性之研究★ 砷化銦量子點異質結構與雷射
★ 氮化鋁鎵銦藍紫光雷射二極體研製與特性分析★ p型披覆層對量子井藍色發光二極體發光機制之影響
★ 磷化銦鎵/砷化鎵異質接面雙極性電晶體鈍化層穩定性與高頻特性之研究★ 氮化鋁中間層對氮化鋁鎵/氮化鎵異質接面場效電晶體之影響
★ 不同濃度矽摻雜之氮化鋁銦鎵位障層對紫外光發光二極體發光機制之影響★ 二元與四元位障層應用於氮化銦鎵綠光二極體之光性分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文主旨為成長氮化銦鎵量子井與藍紫光雷射二極體結構,並探討其量子井結構之發光機制、材料熱穩定性、雷射二極體結構特性量測與分析。
首先,我們利用光激光量測方式及理論計算來研究其發光機制。從不同量子井厚度之氮化銦鎵多重量子井結構光激光譜的變化,我們推估當銦含量為 0.23 時,其內建壓電電場將高達 1.92 MV/cm。由於此內建電場的存在,隨著激發光率的提升,其光激光譜呈現一半高寬縮少之藍位移現象。在高激發功率下,其發光波長隨溫度變化行為大致上吻合 Varshini 的經驗公式。然而在低激發光率下,卻可觀察到一 ‘S’ 型變化之光譜圖。因此,我們首先提出一包含光激發載子與熱游離載子電場遮蔽模型來解釋此一特殊現象。光譜均相性與非均相性寬化隨著溫度變化之相互競爭行為亦有深入的探討。另外,我們從發光效率之溫度相依性中觀察到兩個載子逃脫途徑,利用理論計算方式我們確定此載子逃脫途徑分別為激子解離能及電子從量子井能階至位障層所需之能量。
接著,我們藉由熱處理方式搭配光激光譜量測與理論計算來萃取此材料之相互擴散係數。從獲得之單一活化能行為我們推論此材料之相互擴散機制是由空缺次近位置跳躍方式所主導。而在高銦含量 (~40%) 之量子井結構中,藉由熱處理的方式可觀察到相轉變的現象。從橫切面穿透式電子顯微鏡的觀測可發現高銦含量之類量子點結構經過 900 oC熱處理之後其大小與密度均變小。而相對應之光激光譜只剩兩個主要的訊號,其發光來源分別為量子井能階與侷限能態的躍遷所致。從觀察到之史托克位移能量,我們亦間接推論出其量子井中之內建壓電電場將高達 3.2 MV/cm 以上。之外,在短時間熱處理的實驗中,我們觀察到光激光
譜呈現一紅位移再藍位移之現象,此結果和我們在相互擴散實驗中的推論是一致的,我們亦提出三維度擴散模型來描述此材料原子相互擴散之行為。
最後,我們完成氮化銦鎵藍紫光雷射二極體結構之設計、製作與特性分析。雖可以光激方式得到雷射發光,但仍未能獲電激雷射現象,惟從電激光譜中我們發現兩個不同發光行為的訊號。隨著注入電流的增加,低能量訊號產生極大藍位移與光譜寬化現象;反之,高能量訊號出現些微藍位移與光譜窄化情形。此結果驗證了此結構同時具有侷限能態與二維量子井能階躍遷的特性。特別的是,相對於侷限能態躍遷,此二維量子井能階躍遷訊號具有雙激子特性,這將可大幅降低雷射二極體之臨界電流。此外,我們觀察到侷限能態其載子熱逃脫行為具有電流相依性,並提出一多重載子逃脫途徑模型來解釋此一現象。
摘要(英) This dissertation includes the growth and characterization of InGaN/GaN quantum well and laser diode structures grown by metalorganic chemical vapor deposition. The main work can be divided into the following three parts.
First, the luminescence mechanism of InGaN/GaN multiple quantum wells (MQWs) is studied using photoluminescence (PL) measurements combined with theoretical calculations. A large piezoelectric field of 1.92 MV/cm is deduced from the well width dependence of PL emission energy for the InGaN/GaN MQWs with In composition of ~0.23. Significant spectral blueshift accompanied by linewidth reduction is observed as increasing the excitation power at low temperature. While the emission energy with temperature follows the empirical Varshini equation under high excitation power, the so-called S-shaped spectral shift is observed under low excitation power. A model, taking into account photogenerated and thermally activated carrier screening effects on the polarization field in the InGaN quantum well, is developed to account for this phenomenon. Competition of inhomogeneous and homogeneous PL linewidth broadening with temperature is discussed. Besides, two carrier loss channels are deduced from the temperature quenching of PL intensity. One is the dissociation of exciton and the other one is the escape of electron from quantum well.
Second, the interdiffusion coefficient of In and Ga cations is extracted by self-consistent calculation of diffusion, Schrödinger and Poisson’s equations. The interdiffusion process is characterized by a single activation energy of about 3.4 eV and governed by vacancy-controlled second-nearest-neighbor hopping. Phase transformation in InGaN/GaN MQWs with high indium content (~40%) is observed upon thermal annealing. Cross-sectional transmission electron microscopy shows the existence of quantum dot-like islands within the quantum wells for the as-grown sample but these islands are significantly reduced after thermal annealing at 900 ºC. Two dominant high- and low-energy peaks are assigned to be from the quantum well state and localized state transitions, respectively. A huge piezoelectric field of ~3.2 MV/cm is also deduced from the Stoke shift energy. Besides, the effect of composition inhomogeneity on the luminescence is investigated. The PL peak exhibits a redshift followed by a blueshift with increasing the annealing time. A diffusion model, including the in-plane and out-plane diffusion of In-rich dot-like structures, is proposed to account for the spectral shift. The suppression of phase separation is attributed to the elastic strain in the pseudomorphic InGaN quantum well.
Finally, the electroluminescence characteristics of blue-violet laser diode structures are explored. Two emission peaks with different behavior are observed. Significant blueshift and linewidth broadening is measured for the low-energy peak with injection current, while slight blueshift and moderate linewidth narrowing occurs for the high-energy peak. Accordingly, these two peaks are assigned to be from the localized state and quantum well state emissions, respectively. The quantum well state emission exhibits a biexciton feature in contrast to the localized excitons. Besides, the emission associated with the localized state shows injection current dependent thermal quenching behavior. A multiple carrier escaping mechanism is proposed to account for this phenomenon.
關鍵字(中) ★ 氮化鎵
★ 氮化銦鎵
★ 氮化鋁鎵
★ 有機金屬化學氣相沈積
★ 量子井結構
★ 雷射二極體
關鍵字(英) ★ GaN
★ InGaN
★ AlGaN
★ MOCVD
★ Quantum Well Structure
★ Laser Diodes
論文目次 CONTENTS
DISSERTATION ABSTRACT i
ACKNOWLEDGEMENTS iii
CONTENTS v
FIGURE CAPTIONS vii
TABLE CAPTIONS xiii
CHAPTER 1 INTRODUCTION 1
CHAPTER 2 LUMINESCENCE MECHANISM OF INGAN/GAN
QUANTUM WELL STRUCTURES 3
2.1 Introduction 3
2.2 Experimental details 5
2.3 Quantum-Confined Stark effect 7
2.4 Photogenerated carrier screening effect 14
2.5 Thermally-activated carrier screening effect 16
2.5.1 Temperature dependence of emission energy 16
2.5.2 Temperature dependence of linewidth 19
2.5.3 Thermal quenching behavior 22
CHAPTER 3 THERMAL STABILITY OF INGAN/GAN
MULTIPLE QUANTUM WELLS 27
3.1 Introduction 27
3.2 Experimental Details 29
3.3 Interdiffusion 31
3.3.1 Optical properties 31
3.3.2 Extraction of diffusion parameters 33
3.3.3 Diffusion mechanism 37
3.4 Phase transformation 40
3.4.1 Structural and optical properties 40
3.4.2 Origin of luminescence centers 43
3.5 Effect of composition inhomogeneity 49
3.5.1 Short-term thermal annealing 49
3.5.2 Suppression of phase separation 54
CHAPTER 4 FABRICATION AND CHARACTERIZATION OF ALINGAN
LASER DIODE STRUCTURES 57
4.1 Introduction 57
4.2 Laser structure design 58
4.2.1 N-type AlGaN cladding layer 59
4.2.2 P-type AlGaN cladding layer 63
4.2.3 GaN Waveguiding layer 66
4.2.4 P-type GaN contact layer 67
4.3 Material growth and device characterization 72
4.3.1 P-type AlGaN 72
4.3.2 InGaN/GaN active region 74
4.3.3 Current-voltage characteristics 75
4.3.4 Mg-doped InGaN contact layer 76
4.4 Electroluminescence characteristics 79
4.4.1 Localized excitons and quantum well state emission 79
4.4.2 Temperature dependence 82
4.4.3 Multiple carrier escaping paths model 84
CHAPTER 5 CONCLUSIONS 87
REFERENCES 90
PUBLICATION LIST 97
參考文獻 REFERENCES
1. R. Dingle, R. Shaklee, R. F. Leheny, R. B. Zetterstrom, Phys. Lett. 19, 5 (1971).
2. H. Amano, N. Sawaki, I. Akasaki, Y. Toyoda, Appl. Phy. Lett. 48, 353 (1986).
3. H. Amano, M. Kito, K. Hiramatsu, I. Akasaki, Jpn. J. Appl. Phy. 28, L2112 (1989).
4. S. Nakamura, N. Iwasa, M. Senoh, T. Mukai, Jpn. J. Appl. Phy. 31, 1258 (1992).
5. S. Nakamura, T. Mukai, M. Senoh, Appl. Phy. Lett. 64, 1687 (1994).
6. S. Nakamura, M. Senoh, A. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, and H. Kiyoku, Appl. Phys. Lett. 70, 2753 (1997).
7. S. Nakamura, M. Senoh, A. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, and H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, Appl. Phys. Lett. 72, 2014 (1998); 73, 832 (1998)
8. J.-Y. Duboz, Phy. Stat. Sol. (a) 176, 5 (1999).
9. J. I. Pankove, M. Leksono, S. S. Chang, C. Walker, B. Van Zeghbroeck, MRS Internet J. Nitride Semicond. Res. 1, 39 (1996).
10. S. T. Sheppard, K. Doverspike, W. L. Pribble, S. T. Allen, J. W. Palmour, L. T. Kehias, T. J. Jenkins, IEEE Electron. Device Lett. 20, 161 (1999).
11. S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Hiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, Jpn. J. Appl. Phys., Part 2 37, L627 (1998).
12. S. Nakamura, M. Senoh, S. Nagahama, T. Matsushita, T. Yamada, H. Hiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and T. Mukai, Jpn. J. Appl. Phys., Part 2 38, L226 (1999).
13. I-h. Ho and G. B. Stringfellow, Appl. Phys. Lett. 69, 2701 (1996).
14. Y. Narukawa, Y. Kawakami, Sz. Fujita, Sg. Fujita, and S. Nakamura, Phys. Rev. B 55, R1938 (1997); Y. Narukawa, Y. Kawakami, M. Funato, Sz. Fujita, Sg. Fujita, and S. Nakamura, Appl. Phys. Lett. 70, 981 (1997).
15. S. Chichibu, T. Azuhata, T. Sota, and S. Nakamura, Appl. Phys. Lett. 69, 4188 (1996); 70, 2822 (1997).
16. S. Satake, Y. Masumoto, T. Miyajima, T. Asatsuma, and M. Ikeda, J. Cryst. Growth. 189/190, 601 (1998).
17. K. P. O’Donnell, R. W. Martin, and P. G. Middleton, Phys. Rev. Lett. 82, 237 (1999).
18. P. G. Eliseev, P. Perlin, J. Lee and M. Osinski, Appl. Phys. Lett. 71, 569 (1997).
19. Y.-H. Cho, G. H. Gainer, A. J. Fisher, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, Appl. Phys. Lett. 73, 1370 (1998).
20. D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, Phys. Rev. Lett. 53, 2173 (1984); Phys. Rev. B 32, 1043 (1985).
21. T. Takeuchi, S. Sota, M. Karsuragawa, M. Komori, H. Takeuchi, H. Amano, and I. Akasaki, Jpn. J. Appl. Phys., Part 2 36, L382 (1997).
22. F. D. Sala, A. D. Carlo, P. Lugli, F. Bernadini, V. Fiorentini, R. Scholz, and J. M. Jancu, Appl. Phys. Lett. 74, 2002 (1999).
23. G. Vaschenko,D. Patel, C. S. Menoni, S. Keller, U. K. Mishra, and S. P. DenBaars, Appl. Phys. Lett. 78, 640 (2001).
24. J. S. Im, H. Kollmer, J. Off, A. Sohmer, F. Scholz, and A. Hangleiter, Phy. Rev. B. 57, R9435 (1998)
25. N .Grandjean, B. Damilano, S. Dalmasso, M. Leroux, M. Laügt, and J. Massies, J. Appl. Phys. 86, 3714 (1999).
26. R. Clingolani, A. Botchkarev, H. Tang, H. Morkoç, G. Traetta, G. Coil, M. Lomascolo, A. Di Carlo, F. D. Sala, and P. Lugi, Phys. Rev. B 61, 2711 (2000)
27. V. Fiorentini, F. Bernardini, F. D. Sala, A. D. Carlo, and P. Lugli, Phys. Rev. B 60, 8849 (1999).
28. C. Wetzel, T. Takeuchi, H. Amano, and I. Akasaki, J. Appl. Phys. 85, 3786 (1999).
29. C.-K. Sun, S. Keller, T.-L. Chiu, G. Wang, M. S. Minsky, J. E. Bowers, S. P. DenBaars, IEEE J. Select. Topics Quantum Electron. 3, 731 (1997).
30. P. Riblet, H. Hirayama, A. Kinoshita, A. Hirata, T. Sugano, and Y. Aoyagi, Appl. Phys. Lett. 75, 2241 (1999).
31. K. Saarinen, T. Laine, S. Kuisma, J. Nissilä, P. Hautojärvi, L. Dobrzynski, J. M. Baranowski, K. Pakula, R. Stepniewski, M. Wojdak, A. Wysmolek, T. Suski, M. Leszczynski, I. Grzegory, and S. Porowski, Phys. Rev. Lett. 79, 3030 (1997)
32. C. Y. Lai, T. M. Hsu, W.-H. Chang, K.-U. Tseng, C.-M. Lee, C.-C. Chuo, and J.-I. Chyi, J. Appl. Phys. 91, 531 (2002).
33. J. H. Edger, Ed., Properties of Group III Nitrides (INSPEC, IEE, London), 1994.
34. K.-H. Hellwege, Ed., Numerical Data and Functional Relationships in Science and Technology, Landolt-Bornstein, New Series, Group III-V (Springer, Berlin, 1986), vol. 22a.
35. S. H. Wei and A. Zunger, Appl. Phys. Lett. 69, 2719 (1996).
36. M. Suzuki, T. Uenoyama, and A. Yanase, Phys. Rev. B 52, 8132 (1995).
37. Y. C. Yeo, T. C. Chong, and M. F. Li, J. Appl. Phys. 83, 1429 (1998).
38. V. W. L. Chin, T. L. Tansley, and T. Osotchan, J. Appl. Phys. 75, 7365 (1994).
39. H. C. Yang, P. F. Kuo, T. U. Lin, Y. F. Chen, K. H. Chen, L.C. Chen, and J.-I. Chyi, Appl. Phys. Lett. 76, 3712 (2000).
40. H. Lee, W. Yang, and P. C. Sercel, Phys. Rev. B. 55, 9757 (1997).
41. G. Saint-Girons, G. Patriarche, L. Largeau, J. Coelho, A. Mereuta, and J. M. Moison, Appl. Phys. Lett. 79, 2157 (2001).
42. T. Wang, D. Nakagawa, J. Wang, T. Sugahara, and S. Sakai, Appl. Phys. Lett. 73, 3571 (1998).
43. Y. P. Varshni, Physica 34, 149 (1967).
44. W. Shan, T. J. Schmidt, X. H. Yang, S. J. Hwang, J. J. Song, and B. Goldenberg, Appl. Phys. Lett. 66, 985 (1995).
45. W. Shan, B. D. Little, J. J. Song, Z. C. Feng, M. Schurman, and R. A. Stall, Appl. Phys. Lett. 69, 3315 (1996).
46. B. K. Meyer, G. Steude, A. Goldner, A. Hoffmann, H. Amano, and I. Akasaki, Phys. Stat. Sol. (b) 216, 187 (1999).
47. I.-H. Tan, G. L. Snider, L. D. Chang, and E. L. Hu, J. Appl. Phys. 68, 4071 (1990).
48. W. Götz and N. M. Johnson, in Gallium Nitride (GaN) II, edited by J. I. Pankove and T. D. Moustakas (Academic, New York, 1999), p. 188-190.
49. B. Segall, in Proceedings of the IXth Conference on the Physics of Semiconductors, Moscow, 1968, edited by S. M. Ryvkin (Nauka, Leningrad, 1968), p. 425.
50. M. Illegems,R. Dingle, and R. A. Logan, J. Appl. Phys. 43,3797 (1972).
51. T. Azuhata, T. Sota, K. Suziki, and S. Nakamura, J. Phys.: Condens. Matter 7, L129 (1995).
52. A. K. Viswanath, J. I. Lee, D. Kim, C. R. Lee, and J. Y. Leem, Phys. Rev. B 58, 16333 (1998).
53. A. J. Fischer, W. Shan, G. H. Park, J. J. Song, D. S. Kim, D. S. Yee, R. Horning, and B. Goldenberg, Phys. Rev. B 56, 1077 (1997).
54. A. J. Fischer, W. Shan, J. J. Song, Y. C. Chang, R. Horning, and B. Goldenberg, Appl. Phys. Lett. 71, 1981 (1997).
55. M. S. Skolnick, K. J. Nash, P. R. Tapster, D. J. Mowbray, S. J. Bass, and A. D. Pitt, Phys. Rev. B 35, 5925 (1987).
56. J. P. Loehr and J. Singh, Phys. Rev. B 42, 7154 (1990).
57. G. Traetta, R. Cingolani, A. D. Carlo, F. D. Sala, and P. Lugli, Appl. Phys. Lett. 76, 1042 (2000).
58. P. Bigenwald, A. Kavokin, B. Gil, and P. Lefebvre, Phys. Rev. B 61, 15621 (2000).
59. K. Osamura, S. Naka, and Y. Murakami, J. Appl. Phys. 46, 3432 (1975).
60. M. D. McCluskey, L. T. Romano, B. S. Krusor, D. P. Bour, N. M. Johnson, and S. Brennan, Appl. Phys. Lett. 72, 1730 (1998).
61. M. D. McCluskey, L. T. Romano, B. S. Krusor, N. M. Johnson, T. Suski, and J. Jun, Appl. Phys. Lett. 73, 1281 (1998).
62. J.-S. Tsang, J.-D. Guo, S.-H. Chan, M.-S. Feng and C.-Y. Chang, Jpn. J. Appl. Phys., Part 1 36, 1728, 3 (1997).
63. T. E. Schlesinger and T. Kuech, Appl. Phys. Lett. 49, 519 (1986).
64. W. P. Gillin, D. J. Dunstan, K. P. Homewood, L. K. Howard, and B. J. Sealy, J. Appl. Phys. 73, 3782 (1993).
65. S.-W. Ryu, B.-D. Choe, and W. G. Jeong, Appl. Phys. Lett. 71, 1670 (1997).
66. S. Senz, U. Egger, M. Schultz, U. Gösele, and H. Ito, J. Appl. Phys. Lett. 84, 2546 (1998).
67. L. L. Chang and A. Koma, Appl. Phys. Lett. 29, 138 (1976).
68. S. A. Schwarz, T. Venkatesan, R. Bhat, M. Koza, H. W. Yoon, Y. Arakawa, and P. Mei, Proc. Mater. Res. Soc. 56, 321 (1986).
69. J. C. P. Chang, J. M. Woodall, M. R. Melloch, I. Lahiri, D. D. Nolte, N. Y. Li, and C. W. Tu, Appl. Phys. Lett. 67, 3491 (1995).
70. T. Yamamoto, M. Kasu, S. Noda, and A. Sasaki, J. Appl. Phys. 69, 5318 (1990).
71. J. Crank, Mathematics of Diffusion (Clarendon, Oxford, 1957).
72. A. Trampert, O. Brandt, and K. H. Ploog, in Gallium Nitride (GaN) I, edited by J. I. Pankove and T. D. Moustakas (Academic, New York, 1998), p. 173.
73. K.-N. Tu, J. W. Mayer, L. C. Feldman, Electronic Thin Film Science For Electrical Engineers and Materials Scientists (Macmillan, New York, 1992), p. 60-74.
74. L. H. Li, Z. Pan, W. Zhang, Y. W. Lin, Z. Q. Zhuo, and R. H. Wu, J. Appl. Phys. 87, 245 (2000).
75. J. Neugebauer and C. G. Van de Walle, Appl. Phys. Lett. 69, 503 (1996).
76. K. B. Kahen, D. L. Peterson, G. Rajeswaran, and D. L. Lawrence, Appl. Phys. Lett. 55, 651 (1989).
77. S. Y. Chiang and G. L. Pearson, J. Appl. Phys. 46, 2986 (1975).
78. S. J. Xu, X. C. Wang, S. J. Chua, C. H. Wang, W. J. Fan, J. Jiang, and X. G. Xie, Appl. Phys. Lett. 72, 3335 (1998).
79. H. P. Xin, K. L. Kavanagh, Z. Q. Zhu, and C. W. Tu, Appl. Phys. Lett. 74, 2337 (1999).
80. W. M. Li, R. M. Cohen, D. S. Simons, and P. H. Chi, Appl. Phys. Lett. 70, 3392 (1997).
81. W. D. Laidig, J. W. Lee, P. K. Chiang, L. W. Simpson, and S. M. Bedair, J. Appl. Phys. 54, 6382 (1983).
82. B. I. Boltaks, Diffusion in Semiconductors (Academic Press, 1963).
83. D. A. Porter and K. E. Easterling, Phase Transformations in Metals and Alloys, 2nd ed. (Chapman & Hall, 1992).
84. S. J. Rosner, E. C. Carr, M. J. Ludowise, G. Girolami, and H. I. Erikson, Appl. Phys. Lett. 70, 420 (1997).
85. S.-W. Ryu, I. Kim, and B. D. Choe, Appl. Phys. Lett. 67, 1417 (1995)
86. D. Doppalapudi, S. N. Basu, K. F. Ludwig, Jr. and T. D. Moustakas, J. Appl. Phys. 84, 1389 (1998).
87. K. S. Kim, G. M. Yang, W.-H. Lee, Y. H. Song, J. W. Yang, C.-H. Hong, K. Y. Lim, H. J. Lee, H. K. Cho, and J. Y. Lee, Proc. Int. Workshop on Nitride Semiconductors, IPAP Conf. Series 1, 2000, p. 393.
88. A. N. Alexeev and S. Yu. Karpov, J. Cryst. Growth 162, 15 (1996).
89. S. Yu. Karpov, MRS Internet J. Nitride Semicond. Res. 3, 16 (1998).
90. A. Tabata, L. K. Teles, L. M. R. Scolfaro, and J. R. Leite, A. Kharchenko, T. Frey, D. J. As, D. Schikora, K. Lischka, J. FurthmÜller and F. Bechstedt, Appl. Phys. Lett. 80, 769 (2002).
91. V. Holy, A. A. Darhubre, G. Bauer, P. D. Wang, Y. P. Song, C. M. S. Torres, and M. C. Holland, Phys. Rev. B 52, 8348 (1995).
92. Y.-S. Lin, K.-J. Ma, C. Hsu, S.-W. Feng, Y.-C. Cheng, C.-C. Liao, C. C. Yang, C.-C. Chuo, C.-M. Lee, and J.-I.n Chyi, Appl. Phys. Lett. 77, 2988 (2000).
93. S. F. Chichibu, D. A. Cohen, M. P. Mack, A. C. Abare, P. Kozodoy, M. Minsky, S. Fleischer, S. Keller, J. E. Bouwers, U. K. Mishra, L. A. Coldren, D. R. Clarke, and S. P. DenBaars, Appl. Phys. Lett. 73, 496 (1998).
94. C. A. Tran, R. F. Karlicek Jr., M. Schurman, A. Osinsky, V. Merai, Y. Li, I. Eliashevich, M. G. Brown, J. Nering, I. Ferguson, and R. Stall, J. Crystal Growth 195, 397 (1998).
95. Y. Kaneko, R. Shioda, N. Yamada, T. Takeuchi, H. Amano, and I. Akasaki, Phys. Stat. Sol. (a) 176, 137 (1999).
96. G. Pozina, J. P. Bergman, B. Monemar, T. Takeuchi, H. Amano, and I. Akasaki, J. Appl. Phys. 88, 2677 (2000).
97. M. J. Bergmann and H. C. Casey, Jr., J. Appl. Phys. 84, 1196 (1998).
98. H. C. Casey, Jr., and M. B. Panish, Heterostructure Lasers, Part A: Fundamental Principles, (Academic, Lodon, 1978).
99. G. A. Hockham, Electron. Lett. 9, 389 (1973)
100. V. E. Bougrov and A. S. Zubrilov, J. Appl. Phys. 81, 2952 (1997).
101. M. Onomura, S. Saito, K. Sasanuma, G.-i. Hatakoshi, M. Nakasuji, J. Rennie, L. Sugiura, S. Nunoue, J. Nishio, and K. Itaya, IEEE J. Select. Topics Quantum Electron. 5, 765 (1999).
102. M. A. Reshchikov, G.-C. Yi, and B. W. Wessels, Phys. Rev. B 59, 13176 (1999).
103. T. Tanaka and A. Watanabe, H. Amano, Y. Kobayashi, I. Akasaki, S. Yamazaki and M. Koike, Appl. Phys. Lett. 65, 593 (1994).
104. J. Li, T. N. Oder, M. L. Nakarmi, J. Y. Lin, and H. X. Jiang, Appl. Phys. Lett. 80, 1210 (2002).
105. E. L. Waldron, J. W. Graff, and E. F. Schubert, Apply. Phys. Lett. 79, 2737 (2001).
106. A. Yasan, R. McClintock, S. R. Darvish, Z. Lin, K. Mi, P. Kung, and M. Razeghi, Appl. Phys. Lett. 80, 2108 (2002).
107. K. Kumakura, T. Makimoto, and N. Kobayashi, J. Cryst. Growth 221, 267 (2000).
108. T. Makimoto, K. Kumakura, and N. Kobayashi, J. Cryst. Growth 221, 350 (2000).
109. M. Grundmann and D. Bimberg, Phys. Rev. B 55, 9740 (1997).
110. R. T. Phillips, D. J. Lovering, G. J. Denton, and G. W. Smith, Phys. Rev. B 45, 4308 (1992).
111. Y. Kawakami, Z. G. Peng, Y. Narukawa, S. Fujita, S. Fujita, and S. Nakamura, Appl. Phys. Lett. 69, 1414 (1996).
112. C.-M. Lee, C.-C. Chuo, J.-F. Dai, X.-F. Zheng, and J.-I. Chyi, J. Appl. Phys. 89, 6554 (2001).
113. T. Takeuchi, C. Wetzel, S. Yamaguchi, H. Sakai, H. Amano, I. Akasaki, Y. Kaneko, S. Nakagawa, Y. Yamaoka, and N. Yamada, Appl. Phys. Lett. 73, 1691 (1998).
指導教授 綦振瀛(Jen-Inn Chyi) 審核日期 2002-6-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明