博碩士論文 86326006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:3.138.113.188
姓名 蔡璨樺(Tsann-Hwa Tsai)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 零價鐵技術袪除三氯乙烯之研究
(Study on Trichloroethylene Elimination by Zero-Valent Iron Technology)
相關論文
★ 石油碳氫化合物污染場址健康風險評估之研究★ 混合式厭氧反應槽之效能探討
★ 新型改質矽藻土應用於吸附實廠含銅廢水之探討★ 焚化底渣特性及其再利用管理系統之研究
★ 焚化底渣水洗所衍生廢水特性及處理可行性研究★ 工業廢水污泥灰渣特性及其再利用於水泥砂漿之研究
★ 純氧活性污泥法處理綜合性工業廢水之研究★ 零價鐵反應牆處理三氯乙烯污染物之反應行為研究
★ 預臭氧程序提升綜合性工業廢水生物可分解性之研究★ 下水污泥灰渣應用於銅離子去除之初步探討
★ 纖維材料對於污泥灰渣砂漿工程性質之影響★ 纖維床生物反應器祛除甲苯與三氯乙烯之研究
★ 下水污泥灰渣特性及應用於水泥 砂漿之研究★ 以Microtox檢測方法評估實際廢水生物毒性之研究
★ 化學置換程序回收氯化銅蝕刻廢液之研究★ 零價鐵反應牆外加電壓去除水中三氯乙烯之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究之目的為針對零價鐵技術去除三氯乙烯(TCE)之反應行為進行探討。其中,藉由批次實驗的進行,本研究就不同溶氧態、起始TCE濃度、起始pH值、鐵粉添加量、硝酸鹽濃度及腐植酸濃度等因子,探討其對於零價鐵去除TCE之反應的影響。此外,實驗中並以SEM進行微觀分析,以觀察前處理及反應前後之鐵粉表面型態。
實驗結果顯示,當鐵粉添加量為250g/L時,溶氧起始濃度(2.5~7mg/L)、TCE起始濃度(70~130mg/L)和起始pH值(3~9),對於零價鐵還原TCE之去除率及反應速率常數皆沒有明顯影響,其平均反應速率常數為0.084h-1,半生期為8.26hr。不過,TCE去除速率會隨著鐵粉添加量的增加而提高,當增加1mg/L時,反應速率常數會增加0.03h-1。此外,本研究結果亦顯示,鐵粉經由酸洗及真空乾燥之前處理,具有相當優異的TCE去除能力,其基準化速率常數(KSA)為1.2 10-3 h-1m-2L,基準化半生期(t1/2,N, for 1m2/L)為0.58hr。而SEM觀察亦發現這些鐵粉表面具有許多的坑洞,推測可能具有較大的可反應表面。
另一方面,在硝酸鹽與腐植酸同時存在的情況下,零價鐵去除TCE之反應會受到抑制。其中,當硝酸盬濃度介於20~100mg/L時,其抑制效果並無明顯的差異,此時,反應速率常數介於0.05~0.06h-1之間,然而,當硝酸鹽完全轉化為氨氮後,其K值則會回升至0.07~0.09 h-1之間,與未存在硝酸鹽時之速率常數值相近。
此外,腐植酸對於零價鐵去除TCE的抑制效果,則會隨著腐植酸濃度的增加而提升,當腐植酸濃度為100mg/L時,其反應速率常數僅為未添加腐植酸時之30%左右。
摘要(英) The purpose of this study was aimed to investigate the reaction behavior of trichloroethylene (TCE) by zero-valent iron technology. By the batch tests, effect of dissolved oxygen, initial concentration of TCE, initial pH, amounts of zero-valent iron, nitrate and humic acid were studied to understand the performance and reaction kinetics of TCE elimination. Furthermore, the analysis of scanning electron microscopy (SEM) was carried out to observed the figure of iron surface with pretreatment of removing TCE.
Experimental results indicated the effect of dissolved oxygen (2.5~7mg/L), initial concentration (1.3~61mg/L), and initial pH (3~9) was minimal for the removal and reaction rate constant of TCE elimination as the added amounts of iron was 250g/L. The average value of reaction rate constant and half-life was 0.084h-1 and 8.26hr respectively. However, the removal efficiency of TCE increased as the amounts of iron was increased. The reaction rate constant would increase 0.03h-1 per increasing 1mg/L of iron. Moreover, results revealed the removal of TCE was superior when the zero-valent iron was pretreated with the acid-washed method combining vacuum drying. The normalized rate constant (KSA) and half-live (t1/2,N, for 1m2/L) was estimated to be 1.2 10-3 h-1m-2L and 0.58hr respectively. The image of SEM also showed these grains of iron seemed to be gave greater specific surface.
In addition, the reaction of TCE elimination was inhibited when the TCE coexisted with the nitrate or humic acid. As the nitrate concentration was maintained between 20 to 100 mg/L, the inhibition condition was similar and the reaction rate constant was in the range of 0.05 to 0.06h-1. However, when the nitrate was reduced to ammonia completely, the reaction rate constant of TCE elimination increased to 0.07 ~ 0.09h-1 as well as that without the coexistence of nitrate. Also, the inhibition of TCE elimination increased with the increase of humic acid concentration. When the humic acid concentration was controlled at 100mg/L, the reaction rate constant was reduced to 30% of that without the inhibition of humic acid.
關鍵字(中) ★ 零價鐵
★ 三氯乙烯
★ 反應動力
★ 硝酸盬
★ 腐植酸
關鍵字(英) ★ zero-valent iron
★ trichloroethylene
★ reaction kinetic
★ nitrate
★ humic acid
論文目次 摘要 Ⅰ
目錄 Ⅱ
圖目錄 Ⅴ
表目錄 Ⅶ
第一章 前言 1
1-1 研究緣起 1
1-2 研究目的與內容 2
第二章 文獻回顧 4
2-1 三氯乙烯之物化特性 4
2-2 三氯乙烯之危害與管制 4
2-3 三氯乙烯於地層中之移動行為 9
2-4 受三氯乙烯污染之地下水整治技術 9
2-5 零價鐵去除三氯乙烯之研究現況 13
2-5-1 基本原理 13
2-5-2 影響因子 15
2-5-3 脫氯途徑與反應產物 23
2-5-4 增進零價鐵還原脫氯效果之方法 26
2-5-5 無機鹽類之影響 26
第三章 研究方法 30
3-1 研究流程與實驗內容 30
3-2 操作方法 34
3-3 實驗材料 37
3-4 實驗設備 39
3-5 分析方法 41
第四章 結果與討論 44
4-1 背景實驗 44
4-2 零價鐵去除TCE之影響因子探討 44
4-2-1 溶氧效應 44
4-2-2 三氯乙烯起始濃度效應 48
4-2-3 起始pH值效應 52
4-2-4 鐵粉添加量效應 52
4-3 零價鐵去除TCE之效果評估 57
4-3-1 基準化速率常數之評估 57
4-3-2 TCE之脫氯效果 61
4-4 硝酸鹽效應 65
4-4-1 TCE與硝酸鹽之交互作用 65
4-4-2 鐵粉與硝酸鹽之交互作用 65
4-4-3 硝酸鹽對零價鐵去除TCE之影響 67
4-5 腐植酸效應 76
4-5-1 TCE與腐植酸之交互作用 76
4-5-2 鐵粉與腐植酸之交互作用 76
4-5-3 腐植酸對於零價鐵去除TCE之影響 78
第五章 結論與建議 91
5-1 結論 91
5-2 建議 92
參考文獻 93
參考文獻 1. Agrawal, A. and P. G. Tratnyek, “Reduction of Nitro Aromatic Compounds by Zero-Valnet Iron Metal ”, Environmental Science & Technology, Vol. 30, No. 1, pp. 153-160 (1996).
1. Agrawal, A. and P. G. Tratnyek, “Reduction of Nitro Aromatic Compounds by Zero-Valnet Iron Metal ”, Environmental Science & Technology, Vol. 30, No. 1, pp. 153-160 (1996).
3. Appleton, E. L., “A Nickel-Iron Wall Against Contaminated Groundwater ”, Environmental Science & Technology卅News, Vol. 30, No. 12, pp. 536A-539A (1996).
3. Appleton, E. L., “A Nickel-Iron Wall Against Contaminated Groundwater ”, Environmental Science & Technology卅News, Vol. 30, No. 12, pp. 536A-539A (1996).
3. Appleton, E. L., “A Nickel-Iron Wall Against Contaminated Groundwater ”, Environmental Science & Technology卅News, Vol. 30, No. 12, pp. 536A-539A (1996).
3. Appleton, E. L., “A Nickel-Iron Wall Against Contaminated Groundwater ”, Environmental Science & Technology卅News, Vol. 30, No. 12, pp. 536A-539A (1996).
3. Appleton, E. L., “A Nickel-Iron Wall Against Contaminated Groundwater ”, Environmental Science & Technology卅News, Vol. 30, No. 12, pp. 536A-539A (1996).
3. Appleton, E. L., “A Nickel-Iron Wall Against Contaminated Groundwater ”, Environmental Science & Technology卅News, Vol. 30, No. 12, pp. 536A-539A (1996).
9. Cheng, I. F., Q. Fernando, and N. Korit, “Electrochemical Dechlorination of 4-Chlorophenol to Phenol ”, Environmental Science & Technology, Vol. 31, No. 4, pp. 1074-1078 (1997).
10. Cheng, I. F., R. Muftikian, Q. Fernando, and N. Korte, “Reduction of Nitrate to Ammonia by Zero-Valent Iron”, Chemosphere, Vol. 35, No. 11, pp. 2689-2695 (1997).
10. Cheng, I. F., R. Muftikian, Q. Fernando, and N. Korte, “Reduction of Nitrate to Ammonia by Zero-Valent Iron”, Chemosphere, Vol. 35, No. 11, pp. 2689-2695 (1997).
10. Cheng, I. F., R. Muftikian, Q. Fernando, and N. Korte, “Reduction of Nitrate to Ammonia by Zero-Valent Iron”, Chemosphere, Vol. 35, No. 11, pp. 2689-2695 (1997).
10. Cheng, I. F., R. Muftikian, Q. Fernando, and N. Korte, “Reduction of Nitrate to Ammonia by Zero-Valent Iron”, Chemosphere, Vol. 35, No. 11, pp. 2689-2695 (1997).
14. Fairweather, V., “When Toxics Meet Metal ”, Civil Engineering, May, pp. 44-48 (1996).
14. Fairweather, V., “When Toxics Meet Metal ”, Civil Engineering, May, pp. 44-48 (1996).
16. Fountain, J. C., “Technology for Dense Nonaqueous Phase Liquid Source Zone Remediation”, Ground-Water Remediation Technologies Analysis Center, TE-98-02(1998).
17. Geoenvironmental Engineering, “Iron Constitution ”, Ground Engineering, Vol. 30, No. 6, pp. 20-21 (1997).
18. Gillham, R. W. and S. F. O,Hannesin, “Enhanced Degradation of Halogenated Aliphatics by Zero-Valent Iron”, Ground Water, Vol. 32, No. 6, pp. 958-967 (1994).
18. Gillham, R. W. and S. F. O,Hannesin, “Enhanced Degradation of Halogenated Aliphatics by Zero-Valent Iron”, Ground Water, Vol. 32, No. 6, pp. 958-967 (1994).
20. Gould, J. P., M. Y. Masingale, and M. Miller, “Recovery of Silver and Mercury from COD Samples by Iron Cementation ”, Journal WPCF, Vol. 56, No. 3, pp. 280-286 (1984).
20. Gould, J. P., M. Y. Masingale, and M. Miller, “Recovery of Silver and Mercury from COD Samples by Iron Cementation ”, Journal WPCF, Vol. 56, No. 3, pp. 280-286 (1984).
20. Gould, J. P., M. Y. Masingale, and M. Miller, “Recovery of Silver and Mercury from COD Samples by Iron Cementation ”, Journal WPCF, Vol. 56, No. 3, pp. 280-286 (1984).
23. Huang, C. P., H. W. Wang, and P. C. Chiu, “Nitrate Reduction by Metallic Iron ”, Water Research, Vol. 32, No. 8, pp. 2257-2264 (1998).
23. Huang, C. P., H. W. Wang, and P. C. Chiu, “Nitrate Reduction by Metallic Iron ”, Water Research, Vol. 32, No. 8, pp. 2257-2264 (1998).
23. Huang, C. P., H. W. Wang, and P. C. Chiu, “Nitrate Reduction by Metallic Iron ”, Water Research, Vol. 32, No. 8, pp. 2257-2264 (1998).
26. Lovelace, K. A., “Evaluation the Technical Impracticability of Groundwater Cleanup”, 1997 International Conference on Groundwater Quality Protection, Taipei, pp. 165-179 (1997).
27. Matheson, L. J. and P. G. Tratnydk, “ Reductive Dehalogenation of Chlorinated Methanes by Iron Metal”, Environmental Science & Technology, Vol. 28, No. 12, pp. 2045-2053 (1994).
27. Matheson, L. J. and P. G. Tratnydk, “ Reductive Dehalogenation of Chlorinated Methanes by Iron Metal”, Environmental Science & Technology, Vol. 28, No. 12, pp. 2045-2053 (1994).
27. Matheson, L. J. and P. G. Tratnydk, “ Reductive Dehalogenation of Chlorinated Methanes by Iron Metal”, Environmental Science & Technology, Vol. 28, No. 12, pp. 2045-2053 (1994).
27. Matheson, L. J. and P. G. Tratnydk, “ Reductive Dehalogenation of Chlorinated Methanes by Iron Metal”, Environmental Science & Technology, Vol. 28, No. 12, pp. 2045-2053 (1994).
31. O’Hannesin, S. F and R. W. Gillham, “Long-Term Performance of an In Situ “Iron Wall” for Remediation of VOCs”, Ground Water, Vol. 36, No. 1, pp. 164-170 (1998).
31. O’Hannesin, S. F and R. W. Gillham, “Long-Term Performance of an In Situ “Iron Wall” for Remediation of VOCs”, Ground Water, Vol. 36, No. 1, pp. 164-170 (1998).
33. Orth, S. W. and R. W. Gillham, “Dechlorination of Trichloroethene in Aqueous Solution Using Fe0”, Environmental Science & Technology, Vol. 30, No. 1, pp. 66-71 (1996).
33. Orth, S. W. and R. W. Gillham, “Dechlorination of Trichloroethene in Aqueous Solution Using Fe0”, Environmental Science & Technology, Vol. 30, No. 1, pp. 66-71 (1996).
33. Orth, S. W. and R. W. Gillham, “Dechlorination of Trichloroethene in Aqueous Solution Using Fe0”, Environmental Science & Technology, Vol. 30, No. 1, pp. 66-71 (1996).
33. Orth, S. W. and R. W. Gillham, “Dechlorination of Trichloroethene in Aqueous Solution Using Fe0”, Environmental Science & Technology, Vol. 30, No. 1, pp. 66-71 (1996).
33. Orth, S. W. and R. W. Gillham, “Dechlorination of Trichloroethene in Aqueous Solution Using Fe0”, Environmental Science & Technology, Vol. 30, No. 1, pp. 66-71 (1996).
33. Orth, S. W. and R. W. Gillham, “Dechlorination of Trichloroethene in Aqueous Solution Using Fe0”, Environmental Science & Technology, Vol. 30, No. 1, pp. 66-71 (1996).
33. Orth, S. W. and R. W. Gillham, “Dechlorination of Trichloroethene in Aqueous Solution Using Fe0”, Environmental Science & Technology, Vol. 30, No. 1, pp. 66-71 (1996).
33. Orth, S. W. and R. W. Gillham, “Dechlorination of Trichloroethene in Aqueous Solution Using Fe0”, Environmental Science & Technology, Vol. 30, No. 1, pp. 66-71 (1996).
33. Orth, S. W. and R. W. Gillham, “Dechlorination of Trichloroethene in Aqueous Solution Using Fe0”, Environmental Science & Technology, Vol. 30, No. 1, pp. 66-71 (1996).
33. Orth, S. W. and R. W. Gillham, “Dechlorination of Trichloroethene in Aqueous Solution Using Fe0”, Environmental Science & Technology, Vol. 30, No. 1, pp. 66-71 (1996).
33. Orth, S. W. and R. W. Gillham, “Dechlorination of Trichloroethene in Aqueous Solution Using Fe0”, Environmental Science & Technology, Vol. 30, No. 1, pp. 66-71 (1996).
44. Smith, E.H., “Uptake of Heavy Metals in Batch Systems by a Recycled Iron-Bearing Material”, Water Research, Vol. 30, No. 10, pp. 2424-2434 (1996).
44. Smith, E.H., “Uptake of Heavy Metals in Batch Systems by a Recycled Iron-Bearing Material”, Water Research, Vol. 30, No. 10, pp. 2424-2434 (1996).
46. Tang, W. Z. and R. Z. Chen, “Decolorization Kinetics and Mechanisms of Commercial Dyes by H2O2/Iron Powder System”, Chemosphere, Vol. 32, No. 5, pp. 947-958 (1996).
47. Tratnyek, P. G., “Putting Corrosion to Use Remediating Contaminated Groundwater with Zero-Valent Metals ”, Chemistry & Industry, Vol. 13, pp. 499-503 (1996).
48. U. S. Air Force, “Design Guidance for Application of Permeable Barriers to Remediate Dissolved Chlorinated Solvents” , US Army Corps of Engineers, DG 1110-345-11(1997).
49. U. S. EPA, “An Overview of Underground Storage Tank Remediation Options ” Office of Solid Waste and Emergency Response, 5403W, EPA/510/F-93/029 (1993).
49. U. S. EPA, “An Overview of Underground Storage Tank Remediation Options ” Office of Solid Waste and Emergency Response, 5403W, EPA/510/F-93/029 (1993).
51. U. S. EPA, “Permeable Reactive Barrier Technologies for Contaminant Remediation, ” Office of Research and Development, Washington, DC 20460, EPA/600/R-98/125 (1998).
51. U. S. EPA, “Permeable Reactive Barrier Technologies for Contaminant Remediation, ” Office of Research and Development, Washington, DC 20460, EPA/600/R-98/125 (1998).
51. U. S. EPA, “Permeable Reactive Barrier Technologies for Contaminant Remediation, ” Office of Research and Development, Washington, DC 20460, EPA/600/R-98/125 (1998).
54. Vogel, T. M., C. S. Criddle, and P. L. McCarty, “Transformation of Halogenated Aliphatic Compounds”, Environmental Science & Technology, Vol. 21, No. 8, pp. 722-736 (1987).
54. Vogel, T. M., C. S. Criddle, and P. L. McCarty, “Transformation of Halogenated Aliphatic Compounds”, Environmental Science & Technology, Vol. 21, No. 8, pp. 722-736 (1987).
54. Vogel, T. M., C. S. Criddle, and P. L. McCarty, “Transformation of Halogenated Aliphatic Compounds”, Environmental Science & Technology, Vol. 21, No. 8, pp. 722-736 (1987).
57. Wilson, E. K., “Zero-Valent Metals Provide Possible Solution to Groundwater Problems ”, C&EN, July 3, pp. 19-22 (1995).
57. Wilson, E. K., “Zero-Valent Metals Provide Possible Solution to Groundwater Problems ”, C&EN, July 3, pp. 19-22 (1995).
59. 王素良,「活性碳處理水中氨基甲酸盬農藥之研究」,碩士論文,國立中央大學環境工程研究所,中壢(1996)。
60. 行政院勞工委員會,「物質安全資料表範例」(1997)。
61. 行政院環境保護署,「水污染防治法規」,(1994)。
62. 行政院環境保護署,「廢棄物溝理法暨相關法規彙編」,(1999)。
63. 行政院環境保護署”公告1,3-丁二烯等五種化學物質為毒性化學物質”, http://www.epa.gov.tw/news/jn861014.htm (1997)。
64. 李敏華(譯),Snoeyink, V. l. and D. Jenkins(著),「水質化學」,復漢出版社。
65. 阮國棟、陳啟仁,「”天然衰減法”整治土壤及地下水污染之技術內涵與案例研究」,工業污染防治,第71期,第87-102頁(1999)。
66. 官知嫻、李季眉、盧至人,「甲苯分解菌共代謝三氯乙烯」,第二十三屆廢水處理技術研討會論文集,第727-733頁,台中(1998b)。
67. 官知嫻、李季眉、盧至人,「酚分解菌共代謝三氯乙烯」,第二十三屆廢水處理技術研討會論文集,第710-718頁,台中(1998a)。
68. 林建芬,「甲烷分解菌對三氯乙烯好氧分解之影響」,碩士論文,國立中興大學環境工程研究所,台中(1994)。
69. 林財富、洪旭文,「受污染場址現地化學處理方法介紹」,工業污染防治,第72期,第178-200頁(1999)。
70. 許鎮龍,「常用環保法規彙編」,虹舟出版事業有限公司,二版,第159-163頁,苗栗(1998)。
71. 陳家洵,「地下水污染問題之討論」,應用倫理研究通訊,第3期,第19-23頁(1997)。
72. 陳家洵、董天行,「三氯乙烯污染地下水之整治標準研究-期末報告」,國立中央大學應用地質研究所,中壢(1998)。
73. 蔡文田,「含氯有機溶劑之毒性及新陳代謝機制」,工業污染防治,第43期,第175-187頁(1992)。
74. 蔡文田、邱伸彥,「蒸氣脫脂用含氯溶劑之特性」,工業污染防治,第41期,第145-160頁(1992)。
75. 盧至人(譯),Charbeneau, R. J., P. B. Bedient, and R. C. Loehr(著),「地下水的污染整治」,國立編譯館,台北(1998)。
76. 盧滄海、賴龍山,「廢溶劑回收可行性探討」,工業污染防治,第29期,第102-117頁(1989)。
指導教授 曾迪華(Dyi-Hwa Tseng) 審核日期 2000-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明