博碩士論文 86341010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:5 、訪客IP:3.237.94.109
姓名 文博均(Bor-Juin Wen)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 探討深層發酵中環境因子對巴西洋菇生產多醣之影響
(The influence of environmental conditions on polysaccharide formation by Agaricus blazei in submerged culture)
相關論文
★ 探討菌體形態對於裂褶菌多醣體之影響★ 探討不同培養方式對猴頭菇抗氧化與抗腫瘤性質的影響
★ 探討不同培養溫度Aspergillus niger 對丹參之機能性影響★ 光合菌在光生物反應器產氫之研究
★ 探討培養溫度對巴西蘑菇液態醱酵之影響★ 利用批式液態培養來探討檸檬酸對裂褶菌生長及其多醣體生成影響之研究
★ 探討不同培養基組成對光合菌Rhodobacter sphaeroides生產Coenzyme Q10之研究★ 利用混合特定菌種生產氫氣之研究
★ 探討氧化還原電位作為Clostridium butyricum連續產氫之研究★ 探討培養基之pH值與Xanthan gum的添加對巴西蘑菇多醣體生產之影響
★ 探討麩胺酸的添加和供氧量對液態發酵生產裂褶菌多醣體之研究★ 探討以兩水相系統提昇Clostridium butyricum產氫之研究
★ 探討通氣量對於樟芝醱酵生產生物鹼之影響★ 探討通氣量對於樟芝發酵生產與純化脂解酵素之研究
★ 探討以活性碳吸附酸來提昇Clostridium butyricum產氫之研究★ 探討溫度及剪切力對Actinoplanes sp.生產acarbose 之發酵影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 針對巴西洋菇的發酵技術研究與開發,國內雖起步較慢,不過最近幾年已有相關產品上市,但有關發酵生物程序(bioprocess)中物理因子對巴西洋菇生產
摘要(英) Polysaccharides isolated from certain mushrooms possess anti-tumor activity in animal models. Agaricus blazei Murill (Himematsutake) has stronger anti-tumor activity against Sarcoma 180 in mice than do polysaccharides from Ganoderma lucidum, Lentiuu edodes, and Coriolus versicolor. Nevertheless, improving production of polysaccharide from mycelial fungus A. blazei has received relatively little attention.
Agitation is the major process parameter influencing oxygen transfer, shear, and fermentation mixing performance. Oxygen mass transfer inevitably changes with shear field, thus, leading to contradictory conclusions. For example, pullulan, a polysaccharide from Aureobasidium pullulans, improved with increased agitation speed, but was optimized by low shear stress and dissolved oxygen tension. Intense shear fields in bioreactors damage cell growth and metabolite yields of filamentous fungi. Shear protectants such as serum, and Pluronics have been successfully established in animal cell cultures, and various mechanisms have been proposed including turbulence dampening, and suppression of cell attachment to bubbles. Furthermore, adding protectants was observed to have a negative effect on oxygen transfer for example reducing the value of the volumetric oxygen transfer coefficient kLa. Successes using filamentous cultures have been limited. Consequently, the supplementing of water-soluble polymers to a shear-sensitive filamentous culture may create a shear-protecting and oxygen-limiting environment for the biosynthesis of polysaccharide. This study demonstrates a fermentation strategy for enhancing polysaccharide production of Agaricus blazei in xanthan supplemented culture via shear protection and oxygen limitation.
Xanthan supplementation has been shown to provide shear protection and polysaccharide stimulation of Agaricus blazei. In xanthan-free cultures, the optimal cell yield, 0.63 g biomass/g glucose, and product yield, 0.19 g polysaccharide/g glucose, of the xanthan-free cultures occurred when the critical impeller tip speed was 50.3 cm/s and 100.5 cm/s, respectively. Furthermore, the critical impeller tip speed of cell yield shifted from 50.3 cm/s to 100.5 cm/s with the supplementation of 1 g xanthan/l. Maximum specific product yield, namely 0.74 g polysaccharide/g biomass, was achieved with inlet air supply of 3% O2 and impeller tip speed of 100.5 cm/s.
The biological activities of polysaccharides specifically depend on the chemical structure, the size of the polysaccharide backbone, the structure of the side chain groups and the degree of branching. The β(1 → 3) backbone and the β(1 → 6) branch of polysaccharides are probably responsible for their anti-tumor activity. Variations of biological properties of polysaccharides usually follow from variations in microorganisms, the compositions of media and operational conditions. Polysaccharides isolated from Agaricus blazei have stronger anti-tumor activity against Sarcoma 180 in mice than those from Ganoderma lucidum, Lentiuu edodes, and Coriolus versicolor. Harvest time in a submerged culture determines the quality of the polysaccharide which is associated with the presence of glucanase in the broth. Conventional fermentation operational parameters may not reflect the biological quality of the polysaccharides due to the ambiguous correlations between the structures of polysaccharide and these parameters. Although an in vitro macrophage cell line may be used to monitor the biological quality of polysaccharides by measuring their ability to release cytokine, such a procedure usually takes at least 3 d. The observation presents a great need and challenge to monitor the biological quality of the anti-tumor polysaccharides in a submerged culture. Several reports have related the biological properties of polysaccharides to their molecular weights. Most have indicated that polysaccharides with high molecular weights have high biological properties; however, little attempt has been made to monitor the quality of polysaccharides in a submerged culture. The objective of this study is to develop a method for monitoring the quality of polysaccharides in a submerged culture.
Culture pH is one of the most important parameters affecting polysaccharide fermentations. However, inconsistent conclusions have been drawn in literatures that optimal polysaccharide formation occurred in higher culture pH, and in lower culture pH. Nevertheless, relatively little attention has been focused on culture pH on the biological activity of polysaccharides. Thus, the main objective of this study is to propose a fermentation process with high quality polysaccharides by investigating the influence of culture pH on the yield, molecular weight distribution,
關鍵字(中) ★ 巴西洋菇
★ 攪拌速度
★ 通氣
★ pH
★ 生物活性
★ 溫度
★ 多醣體
關鍵字(英) ★ protectants
★ polysaccharide
★ biological quality
★ Culture pH
★ Agaricus blazei Murill
論文目次 目 錄
內容 頁數
摘要………………………………………………………………………I
目錄…………………………………………………………………VII
圖目錄………………………………………………………………XIII
表目錄………………………………………………………………XVII
第一章、前言……………………………………………………………1
1.1 簡介……………………………………………………………1
1.2 文獻回顧……………………………………………………………5
1.2.1真菌多醣的介紹………………………………………………5
1.2.1.1真菌胞外多醣的合成…………………………………6
1.2.1.2菇類多醣抗腫瘤性…………………………………10
1.2.2免疫與抗癌…………………………………………………17
1.2.2.1免疫…………………………………………………17
1.2.2.2腫瘤與免疫系統……………………………………17
1.2.2.3生物反應修飾物質…………………………………18
1.2.2.3.1常用之生物反應修飾物質…………………18
1.2.2.4免疫活性物質之評估方法…………………………21
1.2.2.4.1免疫活性因子的評估………………………21
1.2.2.5 β-D-glucan的抗腫瘤機制…………………………24
1.2.2.6 β-D-glucan多醣體結構與活性的關係……………26
1.2.2.6.1多醣分子量分佈與活性的關係……………26
1.2.2.6.2 (1→3)鍵結的-β-D-葡聚醣主鏈與活性的關係…………………………………………27
1.2.2.6.3多醣分支度與活性的關係……………………28
1.2.2.6.4構形與活性的關係……………………………29
1.2.2.7 (1→3)-β-D-glucan測定……………………………30
1.2.2.7.1 Aniline blue的專一性……………………30
1.2.2.7.2 Aniline blue檢測法之建立………………30
1.2.3 巴西洋菇……………………………………………………32
1.2.3.1巴西洋菇由來與分類……………………………32
1.2.3.2巴西洋菇生長環境和培植方式…………………32
1.2.3.3巴西洋菇的化學成分……………………………33
1.2.3.4巴西洋菇的活性成分……………………………33
1.2.3.5巴西洋菇多醣體…………………………………35
1.2.3.5.1巴西洋菇多醣體之相關研究……………37
1.2.4 深層液態發酵培養…………………………………………40
1.2.4.1化學因素……………………………………………41
1.2.4.1.1培養基組成之碳源………………………41
1.2.4.1.2培養基組成之氮源………………………42
1.2.4.1.3培養基組成之碳氮比……………………42
1.2.4.1.4培養基組成之無基鹽類…………………43
1.2.4.2物理因子……………………………………………43
1.2.4.2.1剪切力……………………………………43
1.2.4.2.1.1攪拌速率與剪切力…………44
1.2.4.2.2 pH值………………………………………46
1.2.4.2.3溫度………………………………………47
1.2.4.2.4通氣………………………………………48
1.3 研究動機與本文大綱……………………………………………49
1.3.1研究動機……………………………………………………49
1.3.2本文大綱……………………………………………………51
第二章、材料與方法 ………………………………………………… 53
2.1 實驗材料…………………………………………………………53
2.1.1實驗菌株……………………………………………………53
2.1.2實驗藥品……………………………………………………53
2.1.3實驗儀器及其他設備………………………………………55
2.1.4實驗裝置……………………………………………………57
2.2 實驗方法…………………………………………………………58
2.2.1菌株保存……………………………………………………58
2.2.2培養基組成…………………………………………………58
2.2.3操作條件……………………………………………………59
2.2.4分析方法……………………………………………………60
2.3 巴西洋菇發酵液多醣體之生物活性測定………………………61
2.3.1 細胞激素測定………………………………………………61
2.3.1.1細胞株………………………………………………61
2.3.1.2細胞株保存…………………………………………62
2.3.1.3細胞株解凍…………………………………………62
2.3.1.4細胞株繼代培養……………………………………62
2.3.1.5細胞株培養液組成…………………………………62
2.3.1.6動物細胞激素測定實驗流程………………………63
2.3.2 發酵液抗腫瘤細胞生長活性測試…………………………64
2.3.2.1細胞株保存…………………………………………64
2.3.2.2細胞株解凍…………………………………………65
2.3.2.3細胞株繼代培養……………………………………65
2.3.2.4細胞株培養液組成…………………………………65
2.3.2.5發酵液抗腫瘤細胞生長活性實驗流程……………67
2.3.2.5.1發酵液抗腫瘤細胞液預培養…………….67
2.3.2.5.2抗腫瘤細胞生長活性實驗………………67
第三章、不同攪拌強度對巴西洋菇生產多醣之影響……………69
3.1 前言…………………………………………………………69
3.2 實驗方法…………………………………………………………78
3.2.1 菌株及培養基………………………………………………78
3.2.2 發酵操作條件……………………………………………78
3.3 結果與討論………………………………………………………79
3.3.1 攪拌器葉尖速度對細胞產率及比生長速率的影響…79
3.3.2攪拌器葉尖速度對產物產率及產物生產速率的影響…81
3.3.3添加0.1% xanthan對細胞生長及多醣代謝之影響………85
3.3.4 高攪拌器葉尖速度下不同含氧量空氣對細胞生長及多醣代謝之影響……………………………………………………89
3.3.5 攪拌器葉尖速度對巴西洋菇生產多醣生物活性之影響…91
3.3.6 不同反應器對細胞生長及細胞代謝多醣的影響…………99
3.3.6.1不同反應器對細胞生長的影響……………………99
3.3.6.2不同反應器對細胞代謝多醣的影響……………100
3.3.6. 不同反應器對巴西洋菇生產多醣生物活性之影響…………………………………………………102
3.4 巴西洋菇發酵液抗腫瘤能力測試……………………………104
3.5 結論………………………………………………………………107
第四章、不同空氣通氣量對巴西洋菇生產多醣之影響………108
4.1 前言………………………………………………………………108
4.2 實驗方法…………………………………………………………113
4.2.1 菌株及培養基……………………………………………113
4.2.2 發酵操作條件……………………………………………113
4.3 結果與討論………………………………………………………113
4.3.1 不同空氣通氣量對細胞生長的影響……………………113
4.3.2 不同空氣通氣量對細胞代謝多醣的影響………………114
4.3.3 不同空氣通氣量對多醣生物活性之影響………………115
4.4 結論…………………………………………………………119
第五章、溫度對巴西洋菇生產多醣之影響……………………120
5.1 前言……………………………………………………………120
5.2 實驗方法……………………………………………………123
5.2.1 菌株及培養基……………………………………………123
5.2.2 發酵條件…………………………………………………123
5.3 結果與討論………………………………………………………124
5.3.1 不同溫度對細胞生長的影響……………………………124
5.3.2 不同溫度對細胞代謝多醣之影響………………………124
5.3.3 不同溫度對巴西洋菇生產多醣生物活性之影響………126
5.4 結論………………………………………………………………129
第六章、不同起始pH值對巴西洋菇生產多醣之影響………………130
6.1 前言………………………………………………………………130
6.2 實驗方法…………………………………………………………138
6.2.1菌株及培養基………………………………………………138
6.2.2 操作條件…………………………………………………138
6.3 結果與討論………………………………………………………139
6.3.1不同起始pH值巴西洋菇細胞生長之影響………………139
6.3.2不同起始pH值巴西洋菇生長多醣之影響………………139
6.3.3不同起始pH值巴西洋菇多醣生物活性之影響…………141
6.4 結論………………………………………………………………144
第七章、總結論與建議………………………………………………145
7.1 總結………………………………………………………………145
7.2 建議………………………………………………………………146
參考文獻…………………………………………………………147
參考文獻 參考文獻
丁懷謙。2000。食藥用菇多醣體之免疫生理活性。食品工業第32卷第5期:28-42。
水野卓和川合正允。1997。菇類的化學‧生化學。賴慶亮譯。國立編譯館。
王聲遠、許敏玲、李旭生和蕭明熙。1996。靈芝與雲芝免疫增強作用之研究。行政院衛生署中醫藥年報 12 : 257-275。
白壽雄和羅道蘊。1994。生物性多糖體及其應用。生物產業5 : 167-173。
李明春、雷林生、梁東升、許自明、袁錦華、楊淑琴和孫麗莎。2000。靈芝多糖對小鼠腹腔巨噬細胞活性氧自由基的影響。中國藥理學與毒理學雜誌 14:65-68。
林欣穎。2002。裂褶菌多醣體的濃度分析及其對小白鼠之抗氧化活性測試。國立台灣大學動物學研究所。
吳姿宜。2001。探討不同培養方式對猴頭菇抗氧化與抗腫瘤性質的影響。國立中央大學化學工程研究所。
周欣漪。2002。靈芝子實體與液態發酵生成之(1→3)β-D-葡聚醣的差異性。台灣大學食品科技研究所。
徐麗嵐。2002。以柳松菇與鴻喜菇誘導人類白血病細病(U937)分化及對Balb/c鼠皮下移植CT26腫瘤之抑制效果。台灣大學食品科技研究所。
陳妙齡。2000。以松杉靈芝餵食BALB/c鼠探討腹腔免疫反應的功能評估指標。國立臺灣大學農業化學研究所。
陳啟楨。1999。菇類二次代謝物質及其利用。食品工業31 : 1-11。
陳勁初和黃仕政。2000。菇菌類機能性食品之開發。生物產業11 : 164-171。
張文正。2001。KUBY免疫學。合記圖書出版社。台北。
游英欽。1995。以搖瓶振盪及小型發酵槽培養,探討培養基組成及物理化學因子對於靈芝多醣生成及生長形態變化之影響。國立交通大學生物科技研究所。
黃鈴娟。2000。樟芝與姬松茸之抗氧化性質及其多醣組成分析。國立中興大學食品科學研究所。
黃雅惠。1999。巴西洋菇分子生物鑑定系統研究。國立台灣大學農化研究所。
黃麗娜。1998。菇類囷絲體深層培養在食品工業上之應用。食品工業發展研究所。新竹,台灣。
黃仕政和毛正倫。1997。洋菇菌絲體之品質評估。食品科學24 : 44-55。
Adachi Y, Ohno N, Ohsawa M, Okawa S, Yadomae T (1990) Change of biological activities of (1→3)- β-D-glucan from Grifola frondosa upon molecular weight reduction by heat treatment. Chem. Pharm. Bull. 38: 477-481
Amanullah A, Tuttiett B, Nienow A (1998) Agitator speed and dissolved oxygen effects in xanthan fermentations. Biotechnol. Bioeng. 57: 198-210
Arinaga S, Karimine N, Takamuku K, Nanbara S, Nagamatsu, M., Ueo, H., Akiyoshi T (1992) Enhanced production of interleukin 1 and tumor necrosis factor by peripherai monocytes after lentinan administration in patients with gastric carcinoma. Int. J. Immunopharmac. 14: 43-47
Bao XF, Wang XS, Dong Q, Fang JN, and Li XY (2002). Structural features of immunologically active polysaccharides from Ganoderma lucidum. Phytochemistry. 59: 175-181.
Batra KK, J H Nordin, and S Kirkwood (1969). Biosynthesis of the β-D-glucan of Sclerotium rolfsii SACC. Direction of chain propagation and the insertion of the branch residues. Carb. Res. 9: 221.
Bohn JA, Bemiller JN (1995). (1→3)-β-D-glucans biological response modifiers: a review of structure-functional activity relationships. Carbohydr. Polym. 28: 3-14.
Borchers AT, Stern JS, Hackman RM, Keen CL (1999) Mushrooms, tumors, and immunity. Proceeding of Social Experimental Biology Medicine. 221:281-293.
Bortner CD, Oldenburg NBE, Cidlowski JA (1995) The role of DNA fragmentationin apoptosis. Trends. Cell. Bio. 5: 21-26.
Breene WM (1990) Nutritional and medical value of specialty mushrooms. J. food prot. 53:883-894.
Cao LZ, and Lin ZB (2002) Regulation on maturation and function of dendritic cells by Ganoderma lucidum polysaccharides. Immunol. Lett. 83(3):163-169.
Cao LZ, Lin ZB (2003) Regulatory effect of Ganoderma lucidum polysaccharides on cytotoxic T-lymphocytes induced by dendritic cells in vitro. Acta Pharmacol. Sin. 24(4): 321-326.
Catley-BJ (1980) The Extracellular Polysaccharide, Pullulan, Produced by Aureobasidium Pullulans-A Relationship Between Elaboration Rate and Morphology. JOURNAL OF GENERAL MICROBIOLOGY. 120: 265-268.
Chang YW, Lu TJ(2003) Molecular characterization of polysaccharides in hot-water extracts of Ganoderma lucidum fruiting bodies. 4:49-57.
Chao Y, Mitarai M, Sugano Y, Shoda M (2001) Effect of addition of water-soluble polysaccharides on bacterial cellulose production in a 50-L airlift reactor. Biotechnol. Prog.17: 781-785.
Chen WC, Hau DM, Wang CC, Lin IH and Lee SS (1995) Effects of Ganoderma lucidum and krestin on subset T-cell in spleen of γ-irradiated mice. Am. J. Chin. Med. 23:289-298.
Chen YJ, Shiao MS, Lee SS, Wang SY (1997) Effect of Cordyceps sinensis on the proliferation and differentation of human leukemic U937 cells. Life Sci.60: 2349-2359.
Chin-hang Shu and Shang-Tian Yang (1990) Effect of Temperature on Cell Growth and Xanthan Production in Batch Cultures of Xanthomonas xampestris Biotechnol. Bioeng. 35: 454-468.
Cox GW, Melillo G, Chattopadhyay U, Mullet D, Fertel R H and Varesio L (1992) Tumor necrosis factor-α-dependent production of reactive nitrogen intermediates INF-γ-plus IL-2-induced murine macrohpage tumoricidal activity. J. Immunol. 149: 3290.
Cotter TG, Al-Rubeai M (1995) Cell death (apoptosis) in cell culture systems. Trends Biotechnol. 13: 150-155.
Dallies N, Francois J, and Paquet V (1998) A new method for quantitative determination of polysaccharides in the yeast cell wall. Application to the cell wall defective mutants of Sacc haromyces cerevisiae. Yeast 14: 1297-1306.
Delneste Y, Hughes AD, Schiffrin EJ (1998) Functional foods: mechanisms of action on immunocompetent cells. Nutr. Rev. 56: S93-S98.
Demleitner S, Kraus J, Franz G (1992) Synthesis and antitumour activity of derivatives of curdlan and lichenan branched at C-6. Carbohydr. Res. 226: 239-246.
Demleitner S, Kraus J, Franz G (1992) Synthesis and antitumour activity of sulfoalkyl derivatives of curdlan and lichenan. Carbohydr. Res. 226: 247-252.
Oh DK, Kim JH, Yoshida T (1997) Production of a High Viscosity Polysaccharide, Methylan, in a Novel Bioreactor. Biotechnol. bioeng. 54:115-121.
Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal. Chem. 28: 350-356.
Evans NA, Hoyne PA (1982) A fluorochrome from aniline blue: structure, synthesis and fluorescence properties. Aust J.Chem.35: 2571-2575.
Evans NA, Hoyne PA, Stone BA (1984) Characteristics and specificity of the interaction of a fluorochrome from aniline blue (siroflour) with polysaccharides. Carbohydr. Polym. 4: 215-230.
Falch BH, Elgsaeter A, Stokke BT (1999) Exploring the (1→3)-β-D-glucan conformational phase diagrams to optimize the linear to macrocycle conversion of the triple-helical polysaccharide scleroglucan. Biopolymers .50: 496-512.
Falch BH, Espevik T, Ryan L, and Stokke BT (2000) The cytokine stimulating activity of (1→3)-β-D-glucan is depentent on the triple helix conformation. Carbohydr. Res. 329: 587-596.
Fang Q H, Zhong JJ (2002) Effect of initial pH on production of ganoderic acid and polysaccharide by submerged fermentation of Ganoderma lucidum. Process biochem. 37: 769-774.
Felse PA; Panda T (2000) Submerged culture production of chitinase by Trichoderma harzianum in stirred tank bioreactors-the influence of agitator speed. biochem. eng. j. 4 : 115-120.
Fevre M, Rougier M (1981) Beta-1-3-glucan and Beta-1-4-glucan synthesis by membrane-fractions from the fungus Saprolegnia.PLANTA. 151: 232-241.
Fisher M, Yang LX (2002) Anticancer effects and mechanisms of polysaccharide-K (PSK): implications of cancer immunotherapy. Anticancer res. 22: 1737-1754.
Forage RG, Harrison DEF, Pitt DE (1985) Effect of environment on microbial activity. Comprehensive Biotechnology. 1: 253-279.
Fruehauf JP, Bonnard GD, Herberman RB (1982) The effect of lentinan on production of interleukin-1 by human monocytes. Immunopharmacolog., 5: 65-74
Fujimiya Y, Suzuki Y, Oshiman K-I, Kobori H, Moriguchi K, Nakashima H, Matumoto Y, Takahara S, Ebina T, Katakura R (1998) Selective tumoricidal effect of soluble porteoglucan extracted from the basidiomycete, Agaricus blazei Murill, mediated via natural killer cell activation and apoptosis. Cancer lmmunol lmmunother.46:147-159.
Fujimiya Y, Suzuki Y, Katakura R, Ebina T (1999) Tumor-specific cytocidal and immunopotentiating effects of relatively low molecular weight products derived from the basidiomycete, Agaricus blazei Murill. Anticancer Res. 19: 113-118.
Fujimoto S ,Orita K, Kimura T, Kondo T, Taguchi T, Yoshida K, Ogawa, N,Furue H (1983): Clinical evaluation of SPG (schizophyllan) as a therapeutic adjuvant after surgery of gastric cancer-controlled study by an envelope method. Gan To Kagaku Ryoho. 10: 1135-1145.
Funahashi H, Maehara M, Taguchi H, Yoshida T (1987) Effects of agitation by flat-bladed turbine impeller on microbial production of xanthan gum. J. chem. eng. Jpn.
Garcia-Ochoa F; Gomez-Castro E; Santos VE (2000) Oxygen transfer and uptake rates during xanthan gum production. Enzyme Microb. Technol. 27: 680-690.
Gerlier D and Thomasset N (1986) Use of MTT colorimetric assay to measure cell activation. J. Immunol. 94: 57-63.
Gibbs PA, Seviour RJ (1996) Does the agitation rate and/or oxygen saturation influence exopolysaccharide production by Aureobasidium pullulans in batch culture? Appl. Microbiol. Biotechnol. 45: 503-510.
Gibbs PA, Seviour RJ , Schmid F (2000) Growth of Filamentous Fungi in Submerged Culture: Problems and Possible Solutions. Critical Reviews in Biotechnology. 20:17-48.
Goldman R (1988) Characteristics of the β-glucan receptor of murine macrophages. Exp. Cell Res. 174: 481-490.
Gura E, Rau U (1993) Comparison of agitators for the production of branched β-glucanby Schizophyllum commune. J. Biotechnol. 27:193-201.
Hamazaki Y, Kuramoto M. Okamura K, Yajima A, Higashi-iwai H, Suzuki M (1980) Studies on immunotherapy of uterine cervical cancer by administration of schizophyllan (SPG). Nippon Sanka Fujinka Gakkai Zasshi. 32: 329-935.
Heming TA, Tuazon DM, Dave SK, Peterson JW, Bidani A (2001) Post-transcriptional effects of extracellular pH on tumor necrosis factor-alpha production in RAW 246.7 and J774. Clin. Sci. 100: 259-266.
Hirai R, Oguchi Y, Sugita N, Matsunaga K, Nomoto K (1993) Enhancement of T-cell proliferation by PSK. Int. J. Immunopharmac. 15: 745-750.
Ishibashi KI, Miura NN, Adachi Y, Ohno N, Yadomae T (2001) Relationship between solubility of Grifolan, (1→3)-β-D-glucan, and production tumor necrosis factor by macrophages in vitro. Biosci. Biotech. Biochem. 65: 1993-2000.
Ito H, Shimura K aruse S (1977) Studies on antitumor activity of basidiomycete polysaccharides, VI: Antitumor effect of polysaccharides prepared from Coriolus versicolor Iwade. Mie Med. 26: 127-132.
Ito H, Shimura K, Itoh H, Kawade M(1997) Antitumor effects of a new polysaccharide-protein complex (ATOM) prepared from Agaricus blazei (Iwade strain 101)“Himematsutake”and its mechanisms in Tumor-Bearing Mice. Anticancer Res. 17: 277-284.
Jagodziński PP, Lewandowska M, Januchowski R, Franciszkiewicz K, WH.Trzeciak WH (2002) The effect of high molecular weight dextran sulfate on the production of interleukin-8 in monocyte cell culture. Biomed. Pharmacother. 56: 254-257.
Kamijo R, Takeda K, Nagumo M, Konno K (1990) Effects of combinations of transforming growth factor-b and tumor necrosis factor on induction of differentiation of human myelogenous leukemic cell lines. Journal Immunology. 144: 1311-1317.
Kang A, Wang Y, Harvey LM, McNeil B (2000) Effect of air flow rate on scleroglucan synthesis by Sclerotium glucanicum in an airlift bioreactor with an internal loop. Bioprocess eng. 23: 69-74.
Kawagishi H, Katsumi R, Sazawa T, Mizuno T, Hagiwara T, Nakamura T (1989) Cytotoxic steroids from the mushroom Agaricus blazei. Phytochemistry. 27: 2777-2779.
Kim HS, Kacew S, Lee BM (1999) In vitro chemopreventive effects of plant polysaccharides (Aloe barbadensis miller, Lentinus edodes, Ganoderna lucidum and Coriolus versicolor). Carcinogenesis. 20: 1637-1640.
Kim RS, Kim HW, Kim BK. (1997) Suppressive effects of Ganoderma lucidum on proliferation of peripheral blood mononuclear cells. Mol Cell. 7: 52-57.
Kim SW, Kim ES(1997) Studies on the immunomodulaating effects of polysaccharide extracted from Ganoderma lucidum on macrohage. Korean Soc.Food Sci.Nutr. 20: 1226-3311.
Kishida E, Sone Y, Misaki A (1992) Effects of branch distribution and chemical modifications of antitumor (1→3)-β-D-glucan. Carbohydr. Res. 17: 89-95.
Kojima T; Tabata K; Itoh W; Yanaki T (1986) Molecular weight dependence of the antitumor activity of schizophyllan. Agric. Biol. Chem. 50: 231-232.
Kulicke WM, Lettau AI, Thielking H (1997) Correlation between immunological activity, molar mass, and molecular structure of different (1)-β-D-glucans. Carbohydr Res. 297:135-143.
Lacroix C, LeDuy A, Noel G, Choplin L(1985) Effect of pH on the batch fermentation of pullulan from sucrose medium. Biotechnol. bioeng. 27:202-207.
Lazaridou A, Roukas T, Biliaderis CG, Vaikousi H (2002) Characterization of pullulan produced from beet molasses by Aureobasidium pulluans in a stirred tank reactor under varying agitation. Enzyme. Microb. Technol. 31: 122 -132
Lee JH, Kim JH, Zhu IH, Zhan XB, Lee JW, Shin DH, Kim SK (2001) Optimization of conditions for the production of pullulan and high molecular weight pullulan by Aureobasidium pullulans. Biotechnol. lett. 23:817-820.
Lee KM, Lee SY, Lee HY(1999) Bistage control of pH for improving exopolysaccharide production from mycelia of Ganoderma lucidum in an air-lift fermenter. J Biosci Bioeng.88:646-650.
Lee SS, Wei YH, Chen CF, Wang SY, Chen KY (1995) Antitumor effects of Ganoderma lucidum. J. Chin. Med.6: 1-12.
Madi NS, McNeil B, Harvey LM(1996) Influence of culture pH and aeration on ethanol production and pullulan molecular weight by Aureobasidium pullulans. J. Chem. Tech. Biotechnol. 66: 343-350.
Maeda H, Ishida N (1967). Specificity of binding of hexopyranosyl olysaccharides with fluorescent brightener. J. Biochem. 62: 276-278.
Maeda YY, Watanabe ST, Chihara C, Rokutanda M (1988) Denaturation and renaturation of a β-1, 6;1, 3-glucan, Lentinan, associated with expression of T-cell-mediated responses. Cancer Res. 48: 671-675.
Mathur A, Hong Y, Kemp BK, Barrientos AA. Erusalimsky JD (2000) Evaluation of fluorescent dyes for the detection of mitochondrial membrane potential changes in cultured cardiomyocytes. Cardiovasc Res. 46: 126-138.
McNeil B, Kristiansen B (1987) Influence of impeller speed upon the pullulan fermentation. Biotechnol. Lett. l9: 101-104.
McNeil B, Kristiansen B (1990) Temperature effects on polysaccharide formation by Aureobasidium pullulans in stirred tanks. Enzyme Microb. Technol.12: 521-526.
Millet I, Ruddle N H (1994) Diferential regulation of lymphototoxin (LT), lymphotoxin-β(LT-β), and TNF-α in murine T cell clones activated through the TCR. J. Immunol. 152:4336-4346.
Mizuno M, Morimoto M, Minato K, Tsuchida H (1998) Polysaccharides from Agaricus blazei stimulate lymphocyte T-cell subsets in Mice. Biosci Biotechnol Biochem.62: 434-437.
Mizuno T (1995) Bioactive biomolecules of mushrooms: Food function and medicinal effect of mushroom fungi. Food Reviews International. 11: 7-21.
Mizuno T (1996) Development of antitumor polysaccharides from mushroom fungi. Foods Ingred J Jpn. 167: 69-85.
Mizuno T (1999a) The extraction and development of antitumoractive polysaccharides from medicinal mushrooms in Japan. International Journal of Medical Mushrooms.1: 9-29.
Mizuno T (1999b) Bioactive substances in Hericium erinaceus (Yamabushitake), and its medicinal utilization. International Journal of Medical Mushrooms. 1: 105-119.
Mizuno T, Hagiwara Y, Nakamura T, Ito H, Shimura K, Sumiya T, Asakura A (1990a) Antitumor activity and some properties of water-soluble polysaccharides from Himematsutake, the fruiting body of Agaricus blazei murill. Agaric. Biol.Chem.54: 2889-2896.
Mizuno T, Hagiwara T, Nakamura T, Ito H, Shimura K, Sumiya T, Askura A (1990b) Antitumor Activity and Some Properties of Water-insoluble Hetero-glycans from “Himematsutake”,the Fruiting Body of Agaricus blatei Murill. Agric. Biol. Chem. 54: 2897-2905.
Mizuno T, Saito H, Nishitoba T, Kawagishi H (1995) Antitumor active substances from mushrooms. Food Rev. Int. 11: 23-61.
Moscovici M, Ionescu C, Oniscu C, Fotea O, Protopopescu P, Hanganu D (1996) Improved exopolysaccharide of Aureobasidium pullulans, with increased impeller speed. Biotechnol. Lett. 18: 787-790.
Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays .J. Immunol. 157: 203-207.
Muller A, Rice PJ, Ensley HE, Coogan PS, Kalbfleisch JH, Kelley JL, Love EJ, Portera CA, Ha T, Browder I W, Williams DL (1996). Receptor binding and internalization of a water-soluble (1→3)-β-D-glucan biologic response modifier in two monocyte/macrophage cell lines. J. Immunol. 156: 3418-3425.
Muller RJ, Rau U, Cordes K, Klein J (1990) Process and molecular data of branched 1, 3-β-D-glucans in comparison with xanthan. Bioproc. Eng. 5: 89-93.
Narumi S, Finke JH, Hamilton TA (1990) Interferon-γ and IL-2 synergize to induce selective monokine expression in murine peritoneal macrophages. J. Biol. Chem. 265:70-36.
Nedwin GE, Svedersky LP, Bringman TS, Palladino MA, Goeddel DV (1985) Effect of interleukin-2, interferon-γ, and mitogens on the production of tumor necrosis factors α and β. J. Immunol.135: 2492-2496.
Norisuye T, Yanaki T, Fujita H (1980) Triple helix of a Schizophyllum commune polysaccharide in aqueous solution. J. Polym. Sci. 18: 547-558.
Ogawa K, Tsurugi J, Watanabe T (1973) The dependence of the conformation of a (1→3)-β-D-glucan on chain-length in alkaline solution. Carbohydr. Res. 29: 397-403.
Ohno N, Adachi Y, Suzuki I, Sato K, Oikawa S, Yadomae T (1986) Characterization of the antitumor glucan obtained from liquid-cultured Grifola frondosa. Chem. Pharm. Bull. 34: 1709-1715.
Oh D, Kim J, Yoshida T (1997) Production of a high viscosity polysaccharide, Methylan, in a novel bioreactor. Biotechnol. Bioeng. 54: 115-121.
Ohno N, Asada N, Adachi Y, Yadomae T (1995) Enhancement of LPS triggered TNF-α(tumor necrosis factor-α) production by (1→3)-β-D-glucans in mice. Biol. Pharm. Bull. 18: 126-133.
Ohno N, Miura NN, Chiba N, Adachi Y, Yadomae T (1995) Comparison of the immunopharmacological activities of triple and single-helical schizophyllan in mice. Biol. Pharm. Bull. 18: 1242-1247.
Oka M, Hazama S, Suzuki M, Wang F, Wadamori K, Iizuka N, Takeda S, Akitomi Y, Ohba Y, Kajiwara K, Suga T, Suzuki T (1996) In vitro and in vivo analysis of human leukocyte binding by the antitumor polysaccharide, Lentinan. Int. J. Immunopharmac. 18: 211-216.
Okai Y, Okai KH, Ishizaka S, Yamashita U (1997) Enhancing effect of polysaccharides from an edible brown alga, Hijikia fusiforme (Hijiki), on release of tumor necrosis factor-α from macrophages of endotoxin-nonresponder C3H/HeJ mice. Nutr. cancer. 27(1): 74-79.
Ooi VE, Liu F (2000) Immunomodulation and anti-cancer activity of polysaccharide-protein complexes. Current Medical Chemistry. 7: 715-729.
Pace RL, Russel SW, Torres BA, Johnson HM, Gray PW (1983) Recombinant mouse γ interferon induces the priming step in macrophage activation for tumor cell killing. J. Immunol. 130:2011-2016.
Pang QH, Tang YJ, Zhong JJ (2002) Effect of initial pH on production of ganoderic acid and polysaccharide by submerged fermentation on Ganoderma lucidum. Process Biochem. 37: 769-774.
Peters HU, Herbst H, Hesselink PGM, Lunsdorf H, Schumpe A, Decker W D (1989) The influence of agaitation rate of xanthan production by Xanthomonas campestris. Biotechnol. Bioeng. 34:1394-1397.
Ponzoni EA (1992) The combination of IFN-γ and TNF cause a rapid and extensive differentiation of human neuroblastoma cells. Cancer res. 52: 931.
Rau U, Brandt C (1994) Oxygen controlled batch cultivations of Schizophyllum commune for enhanced production of branched β-1,3-glucans. Bioprocess eng. 16: 161-165.
Rau U, Gura E, Olszewski E, Wagner F (1992) Enhanced glucan formation of filamentous fungi by effective mixing, oxygen limitation and fed-batch processing. J. Ind. Microbiol. 9:19-26.
Rhoades KL, Golub SH, Economou JS (1992) The regulation of the human tumor necrosis factor a promoter region in macrophage, T cell, and B cell lines. J. Biol.Chem. 267: 22102-22107.
Sakagami H, Aoki T, Simpson A , Tanum S (1991) Induction ofimmunopotention activity by a ptotein-bound polysaccharide, PSK. Anticancer res. 11: 993-1000.
Sakagami H, Ikeda M, Konno K (1989) Stimulation of tumor necrosis factor-induced human myelogenous leukemic cell differentiation by high molecular weight PSK subfraction. Biochem. biophys. res. commun. 162:597-603.
Sengbusch PV, Hechler J, Muller U (1983) Molecular architecture of fungal cell walls. An approach by use of fluorescent markers. Eur. J. Cell Biol. 30: 305-312.
Taurhesia S, McNeil B (1994) Physicochemical Factors Affecting the Formation of the Biological Response Modifier Scleroglucan. J. chem. Tech. Biotechnol. 59:157-163.
Shen YC, Yang SW, Lin CS, Chen CH, Kuo YH, Chen CF. Zhankuic acid (1997) a new metabolite from a formosan fungus Antrodia cinnamomea. Planta med. 63: 86-88.
Shigeo U, Tadashi K, Chihiro H, Masuyaki M, Arata G, Naomi I, Yoshinari H (1983) Polysaccharides in fugi, VIII. Antitunor activity of various polysaccharides isolated from dictyophra indusiata, Ganoderma japonicum, Coudyceps cicadae, Auricularia auticulajudae, and Auricularia species. Chem. Pharm. Bull. 31: 741-744.
Sia GM ,Candlish JK(1999) Effect of shiitake (Lentinus edodes) extract on human neutrophils and the U937 monocytic cell line.Phytother. Res. 13:133-137.
Smith JE, Rowan NJ, Sullivan R (2002) Medicinal mushrooms: a rapidly developing area of biotechnology for cancer therapy and other bioactivities. Biotechnol. Lett. 24: 1839-1845.
Sone Y, Okuda R, Wada N, Kishida E, Misaki A (1985) Structures and antitumor activities of the polysaccharides isolated from fruiting body and the growing culture of mycelium of Ganoderma lucidum. Agric Biol Chem. 49: 2641-2653.
Song TY, Yen GC (2003) Protective effects of fermented filtrate from Antrodia camphorata in submerged culture against CC14-induced hepatic toxicity in rats. J. agric. food chem. 51: 1571-1577.
Suzuki I, Hashimoto K, Ohno N, Tanaka H, Yadomae T(1989) Immunomodulation by orally administered β-glucans in mice. Int. J. Immunopharmac. 11: 761-769.
Taichi U, Yoshio I, uysuki H., Tashi M, Motohiro T, Kenkichi S, Masao A(1981) Antitumor activity of water-soluble β-D-glucan elaborated by Ganoderma applanatum. Carbohydr Res. 92: 109-120.
Takashi M, Kato N, Tosuka A, Takenake K, Shinkai K, Shimizu M (1984) Fractionation structural features and antitumor activity of water-solbule polysaccharide from “Reishi” the fruiting body of Ganoderma lucidum. Nippon Nogeikagaku Kaishi. 58: 871-880.
Taurhesia S, McNeil B (1994) Physicochemical factors affecting the formation of the biological response modifier scleroglucan. J. Chem. Tech. Biotechnol. 59: 157-163.
Toshio M (1983) Relationship between the chemical structure and antitumor activity of basidiomycete glucans. Shinkin to Shinkinsho. 24: 95-101.
Umasankar H, Annadurai G, Chellapandian M, Krishnan M (1996) Xanthan production-effect of agitation. Bioprocess Eng. 15: 35-37.
Wang Y, McNeil B (1995) Dissolved oxygen and scleroglucan fermentation process. Biotechnol. Lett. 17: 257-262.
Wang HX, Liu WK, Ng TB, Ooi V E C,Chang ST (1995) Immunomodulatory and antitumor activities of a polysaccharide-peptide complex from a mycelial culture of Tricholoma sp, a local edible mushroom. Life Sci. 57: 269-281.
Wang HX, Ng TB, Liu WK, Ooi VEC, Chang ST (1996) Polysaccharide-peptide complexes from the cultured mycelia of the mushroom Coriolus versicolor and their culture medium activate mouse lymphocytes and macrophages. Cell Biol.28: 601-607.
Wang SY, Hsu ML, Hsu HC, Tzeng CH, Lee SS, Shiao MS, Ho CK (1997) The anti-tumor effect of Ganoderma lucidum is mediated by cytokines released from activated macrophages and Tlymphocytes. 70: 699-705.
Wang Y, McNeil B (1995) pH effects on exopolysaccharide and oxlic acid production in cultures of Sclerotium glucanium. Enzyme Microb. Technol.17:124-130.
Wang Y, McNeil B (1995) Effect of temperature on scleroglucan synthesis and organic acid production by Sclerotium glucanicum. Enzyme Microb. Technol. 17: 893-899.
Wang Y, McNeil B (1996) Scleroglucan, Critical Reviews in Biotechnology.16: 185-215.
Wecker A, Onken U (1991) Influence of dissolved oxygen concentration and shear rate on the production of pullulan by Aureobasidium pululans. Biotechnol. lett. 13: 155-160.
Won SJ, Lee SS, Ke YH, Lin MT (1989) Enhancement of splenic NK cytotoxic activity by extracts of Ganoderma lucidum mycelium in mice. J. Biomed. Lab. Sci. 2: 201-213.
Wood PJ, Fulcher RG (984) Specific interaction of aniline blue with (1→3)- β-D-glucan. Carbohydr Polym. 4: 49-72.
Yang FC, Liau CB (1998) Effect of cultivation on the mycelia growth of Ganoderma lucidum in submerged flask cultures. Bioprocess Eng. 19: 233-236.
Yang FC , Liau CB (1998) The influence of environmental conditions on polysaccharide formation by Ganoderma lucidum in submerged cultures. Process biochem.33: 547-553.
Young SH, Jacobs RR(1998) Sodium hydroxide-induced conformational change in schizophyllan detected by the fluorescence dye, aniline blue. Carbohydr. res. 310: 91-99.
指導教授 徐敬衡(Chin-Hang Shu) 審核日期 2004-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明