博碩士論文 86346003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:18.119.107.96
姓名 潘時正(Shih-Cheng Pan)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 下水污泥灰渣特性及應用於水泥 砂漿之研究
(The Characteristics of Sewage Sludge Ash and Its Applications in Cement Mortar )
相關論文
★ 石油碳氫化合物污染場址健康風險評估之研究★ 混合式厭氧反應槽之效能探討
★ 新型改質矽藻土應用於吸附實廠含銅廢水之探討★ 焚化底渣特性及其再利用管理系統之研究
★ 焚化底渣水洗所衍生廢水特性及處理可行性研究★ 工業廢水污泥灰渣特性及其再利用於水泥砂漿之研究
★ 純氧活性污泥法處理綜合性工業廢水之研究★ 零價鐵技術袪除三氯乙烯之研究
★ 零價鐵反應牆處理三氯乙烯污染物之反應行為研究★ 預臭氧程序提升綜合性工業廢水生物可分解性之研究
★ 下水污泥灰渣應用於銅離子去除之初步探討★ 纖維材料對於污泥灰渣砂漿工程性質之影響
★ 纖維床生物反應器祛除甲苯與三氯乙烯之研究★ 以Microtox檢測方法評估實際廢水生物毒性之研究
★ 化學置換程序回收氯化銅蝕刻廢液之研究★ 零價鐵反應牆外加電壓去除水中三氯乙烯之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 隨著台灣地區污水下水道接管率提升,預期下水污泥產生量將逐年增加,因此污泥焚化已成為下水污泥處理方案之一。雖然污泥焚化有良好之減量及安定效果,但產生之下水污泥灰渣需加以資源化再利用,以減少最終處置需求及對環境衝擊。在各種下水污泥灰渣資源化技術中,將其回收作為骨材與卜作嵐摻料,並應用於水泥砂漿,經相關研究初步證明可行。然而對於下水污泥灰渣特性,及其在砂漿中之作用機制,以及污泥灰渣砂漿之改良技術,目前尚缺乏有系統之相關探討。
基於以上理由,本研究採取民生及八里污水處理廠下水污泥,以模具式焚化爐製備下水污泥灰渣,除分析其物理、化學、結晶及卜作嵐性質,並將樣本應用於水泥砂漿,取代部份骨材或水泥,並分析試體工作性及抗壓強度。至於在污泥灰渣砂漿改良技術方面,本研究選擇污泥灰渣高溫灼燒、機械研磨增加灰渣細度,以及於砂漿中使用強塑劑與活化劑等化學摻料,進行分析與探討。
本研究經試驗得知,下水污泥灰渣主要為污泥焚化之灼燒殘餘物構成,為表面不規則之細微顆粒,具有相當之孔隙體積與表面積,主要成分為矽、鋁、鐵之氧化物,以及石英等結晶成分,同時具有一定之卜作嵐活性。此外,本研究發現以下水污泥灰渣取代砂漿骨材,其灰渣砂漿工作性及抗壓強度發展均不理想;但以下水污泥灰渣作為卜作嵐摻料,以取代5~20%之砂漿水泥,則硬固試體第28天抗壓強度,可達控制組砂漿之60~80%,顯示具有應用價值。在污泥灰渣砂漿改良成效方面,本研究發現下水污泥灰渣經1,000~1,200oC高溫灼燒,並配合水淬處理,可明顯提高卜作嵐活性及灰渣砂漿工作性;以機械研磨處理下污泥灰渣,其細度每提高100 m2/kg,約可增加5%之強度活性指數;至於使用化學摻料,由於強塑劑之減水效應,以及活化劑對水化產物生成之催化作用,使其分別能改善砂漿工作性及早期抗壓強度發展。
綜合以上各項發現,本研究證明下水污泥灰渣具有特定之物理、化學及卜作嵐性質,可被視為一有用資源,並可應用於水泥砂漿以取代部份水泥。此外,本研究同時掌握污泥灰渣在砂漿中之影響機制,以及有效之灰渣砂漿改良技術,均有助於進一步提升其應用潛力與價值。
摘要(英) Due to the continuous upgrading of the service rate of the urban sewerage system in Taiwan area, the sewage sludge production is expected to increase simultaneously. Thus, the sludge incineration has become one of the alternatives for sewage sludge disposal. Although incineration can obtain optimum volume reduction and stabilization for sewage sludge, the sewage sludge ash (SSA) still needs to be reused in order to minimize the land demand for final disposal and the environmental impact. Among those reusing technologies, to apply SSA into cement mortar has been proved to be technically and economically feasible by previous research works. However, the total properties of SSA, and its roles in mortar, and the corresponding modification technologies for SSA mortars, have seldom been discussed in the literatures.
For above reasons, this study selected the sewage sludge of the Ming-Shen Community WWTP and the Pa-Li WWTP to be investigated. The samples of sewage sludge were incinerated in a modular incinerator and the SSA was obtained. The physical properties, chemical compositions, crystalline constituents, and pozzolanic properties of SSA were analyzed. The SSA samples were further applied into mortar to replace partial cement or aggregate. Meanwhile, the workability and compressive strength of SSA mortar were tested. In addition, three potential modifications for SSA mortar, including the high-temperature calcination of SSA, the extended grinding to increase SSA fineness, the application of chemical admixtures, including super-plasticizers and activators, were also investigated and evaluated in this study.
According to the test results, the SSA was essentially the burnt residue of raw sludge and contained fine particles with porous irregular morphology and great amounts of pore volume and surface area. The major chemical compositions of SSA included SiO2, Al2O3, and Fe2O3, and its crystalline constituent was primarily quartz. In addition, SSA exhibited certain pozzolanic activity. When SSA was reused to replace mortar aggregate, the SSA mortar exhibited poor workability and compressive strength. In contrast, when SSA was reused to replace 5-20% mortar cement, the compressive strength at age of 28 days of the hardened SSA mortar could achieve 60-80% of that of control mortar. This result revealed that to reuse SSA in replacing mortar cement has higher potential than in replacing mortar aggregate. Regarding the modification of SSA mortar, this study found that to calcined SSA at 1,000-1,200oC and followed by water quenching, could greatly improve the pozzolanic activity of SSA and the workability of SSA mortars. In addition, the extended grinding of SSA was found to increase 5% of the strength activity index of SSA with per increment of 100 m2/kg of the Blaine fineness. Finally, due to the water-reducing effect provided by the super-plasticizers, and the hydration acceleration effect provided by the activators, to apply the chemical admixtures could improve the workability and compressive strength development at early ages of SSA mortars respectively.
Based on above results, the SSA is a useful material in respect of its physical, chemical, and mineral properties, and can be reused as a pozzolanic material to replace partial cement of mortar. This study has also revealed the roles and mechanisms of SSA, and the effective modification technologies for SSA mortars. These findings are helpful in elevating the potential and value of the application of SSA in cement mortar.
關鍵字(中) ★ 下水污泥灰渣
★ 水泥砂漿
★ 卜作嵐活性
★ 工作性
★ 抗壓強度
關鍵字(英) ★ pozzolanic activity
★ workability
★ compressive strength
★ cement mortar
★ sewage sludge ash
論文目次 摘 要
目 錄 i
圖目錄 iv
表目錄 vii
第一章 前言 1
1-1 研究緣起 1
1-2 研究目的與內容 4
第二章 文獻回顧 7
2-1 下水污泥處理處置與資源化 7
2-1-1 國內外下水污泥處理處置概況 7
2-1-2 下水污泥資源化技術 12
2-2 下水污泥灰渣特性 19
2-2-1 下水污泥灰渣化學組成 19
2-2-2 下水污泥灰渣物理特性 23
2-2-3 下水污泥灰渣卜作嵐特性 23
2-3 水泥與混凝土基本原理 26
2-3-1 卜特蘭水泥物理及化學性質 26
2-3-2 卜特蘭水泥水化反應 28
2-3-3 水泥混凝土性質 35
2-4 卜作嵐材料基本原理 41
2-4-1 卜作嵐反應基本原理 41
2-4-2 影響卜作嵐反應之因素 43
2-4-3 卜作嵐材料類型 45
2-4-4 卜作嵐活性之評估 47
2-5 下水污泥灰渣應用於水泥混凝土 52
2-5-1 下水污泥灰渣取代骨材 52
2-5-2 下水污泥灰渣取代水泥 54
2-6 卜作嵐材料改良技術 57
2-6-1 熱處理法 57
2-6-2 提升卜作嵐材料細度 59
2-6-3 化學摻料之應用 62
第三章 研究方法 67
3-1 研究材料 67
3-2 試驗與分析方法 69
3-2-1 下水污泥採樣及分析方法 69
3-2-2 下水污泥灰渣製備及分析方法 72
3-2-3 灰渣卜作嵐性質分析方法 79
3-2-4 砂漿製備及分析方法 81
3-2-5 精密儀器分析方法 84
3-3 實驗計畫 94
3-3-1 污泥灰渣特性分析 94
3-3-2 污泥灰渣再利用於水泥砂漿 94
3-3-3 污泥灰渣砂漿改良技術 96
第四章 下水污泥灰渣特性 103
4-1 下水污泥基本性質 103
4-2 下水污泥灰渣物理性質 105
4-3 下水污泥灰渣化學性質 109
4-3-1 下水污泥灰渣化學組成 109
4-3-2 下水污泥灰渣重金屬 110
4-3-3 非健性物質 111
4-3-4 結晶組成 113
4-4 下水污泥灰渣卜作嵐性質 116
4-4-1 下水污泥灰渣卜作嵐活性 116
4-4-2 污泥灰渣卜作嵐反應水化產物 118
4-5 含石灰污泥灰渣性質 121
4-6 本章總結 123
第五章 下水污泥灰渣再利用於水泥砂漿 127
5-1 下水污泥灰渣取代砂漿骨材 127
5-1-1 新拌砂漿性質 127
5-1-2 硬固砂漿性質 127
5-2 下水污泥灰渣取代砂漿水泥 138
5-2-1 新拌砂漿性質 138
5-2-2 硬固砂漿性質 138
5-3 本章總結 147
第六章 下水污泥灰渣砂漿之改良 151
6-1 下水污泥灰渣高溫灼燒處理 151
6-1-1 灼燒污泥灰渣物理與表面性質 151
6-1-2 灼燒污泥灰渣卜作嵐性質 152
6-1-3 灼燒污泥灰渣應用於水泥砂漿 161
6-2 下水污泥灰渣機械研磨處理 166
6-2-1 研磨時間對灰渣性質之影響 166
6-2-2 污泥灰渣細度對水泥凝結時間之影響 169
6-2-3 污泥灰渣細度對砂漿工作性之影響 172
6-2-4 污泥灰渣細度對卜作嵐活性之影響 174
6-3 化學摻料應用於污泥灰渣砂漿 178
6-3-1 強塑劑應用於污泥灰渣砂漿 178
6-3-2 活化劑應用於污泥灰渣砂漿 185
6-4 本章總結 194
第七章 結論與建議 199
5-1 結論 199
5-2 建議 201
參考文獻 203
參考標準方法與規範 215
中英文名詞對照 217
附錄 試程配置與原始數據
圖 目 錄
頁次
圖1-1 本研究整體研究流程 6
圖2-1 下水污泥資源化技術示意圖 18
圖2-2 數種下水污泥灰渣的粒徑分佈 25
圖2-3 雪矽鈣石型及六水矽鈣石型C-S-H膠體示意圖 29
圖2-4 矽酸三鈣水化過程 34
圖2-5 C3S初始水化與反應層示意圖 34
圖2-6 混凝土凝結與硬化過程 37
圖2-7 典型水泥混凝土應力應變曲線 39
圖2-8 污泥灰渣取代骨材對混凝土抗壓強度之影響 53
圖2-9 污泥灰渣取代水泥對混凝土抗壓強度之影響 54
圖2-10 四種常見強塑劑之化學式 65
圖2-11 強塑劑與水泥水化作用機制 66
圖3-1 下水污泥灰渣製備流程 73
圖3-2 Bragg定律示意圖 86
圖3-3 卜特蘭水泥、矽酸鈣水化膠體及氧化矽中矽氧正四面體結構 88
圖3-4 SEM電子入射所放出之電子及電磁波 91
圖3-5 SEM儀器構造示意圖 91
圖4-1 下水污泥灰渣篩分析結果 105
圖4-2 下水污泥灰渣孔徑分析結果 107
圖4-3 下水污泥灰渣SEM影像 108
圖4-4 下水污泥灰渣TGA分析結果 112
圖4-5 下水污泥灰渣、乾燥污泥、飛灰及水泥XRD分析結果 114
圖4-6 下水污泥灰渣NMR分析結果 117
圖4-7 污泥灰渣石灰漿及水泥漿XRD分析結果 119
圖4-8 含石灰污泥灰渣XRD分析結果 122
圖4-9 下水污泥灰渣與飛灰氧化矽及氧化鋁成分分析 124
圖4-10 下水污泥灰渣主要成分形成過程示意圖 125
圖5-1 污泥灰渣砂漿骨材取代率與水灰比關係 128
圖5-2 污泥灰渣砂漿骨材取代率與單位重關係 128
圖5-3 不同骨材取代率污泥灰渣砂漿抗壓強度發展 130
圖5-4 不同骨材取代率污泥灰渣砂漿相對抗壓強度 130
圖5-5 不同養治齡期下控制組砂漿孔徑分佈 131
圖5-6 不同養治齡期下污泥灰渣砂漿孔徑分佈 132
圖5-7 污泥灰渣砂漿SEM影像 133
圖5-8 控制組砂漿毛細孔隙體積變化情形 134
圖5-9 污泥灰渣砂漿毛細孔隙體積變化情形 134
圖5-10 不同骨材取代率污泥灰渣砂漿孔徑分佈 136
圖5-11骨材取代率與污泥灰渣砂漿毛細孔隙體積關係 137
圖5-12 污泥灰渣砂漿及飛灰砂漿流度值 139
圖5-13 不同水泥取代率污泥灰渣砂漿抗壓強度發展 139
圖5-14 不同水泥取代率飛灰砂漿抗壓強度發展 140
圖5-15 污泥灰渣砂漿及飛灰砂漿相對抗壓強度 141
圖5-16 不同養治齡期下污泥灰渣砂漿孔徑分佈 142
圖5-17 不同養治齡期下飛灰砂漿孔徑分佈 143
圖5-18 污泥灰渣砂漿毛細孔隙體積變化情形 144
圖5-19 飛灰砂漿毛細孔隙體積變化情形 144
圖5-20 砂漿抗壓強度與毛細孔隙體積關係 147
圖5-21 污泥灰渣使用量與砂漿抗壓強度關係 149
圖6-1 灼燒污泥灰渣SEM影像 153
圖6-2 灼燒污泥灰渣SAI值 154
圖6-3 灼燒污泥灰渣XRD分析結果 155
圖6-4 灼燒污泥灰渣XRD分析結果 156
圖6-5 灼燒污泥灰渣可反應性氧化矽含量 157
圖6-6 灼燒污泥灰渣可反應性氧化矽含量與SAI值之關係 158
圖6-7 灼燒污泥灰渣NMR分析結果 159
圖6-8 灼燒污泥灰渣石灰漿XRD分析結果 160
圖6-9 灼燒污泥灰渣水泥漿XRD圖譜基準線 162
圖6-10 灼燒溫度與污泥灰渣砂漿流度值關係 163
圖6-11 灼燒污泥灰渣砂漿水泥取代率流度值關係 163
圖6-12 不同水泥取代率灼燒污泥灰渣砂漿抗壓強度發展 164
圖6-13 灼燒污泥灰渣砂漿相對抗壓強度 165
圖6-14 污泥灰渣研磨時間與細度關係 167
圖6-15 污泥灰渣研磨時間與BET比表面積關係 167
圖6-16 不同研磨時間下水污泥灰渣SEM影像 168
圖6-17 不同研磨時間污泥灰渣XRD分析結果 170
圖6-18 污泥灰渣研磨時間與水泥凝結時間關係 171
圖6-19 污泥灰渣研磨時間與砂漿流度關係 173
圖6-20 污泥灰渣細度對漿體水分分佈及顆粒摩擦力影響 173
圖6-21 污泥灰渣研磨時間與卜作嵐活性關係 175
圖6-22 污泥灰渣細度與卜作嵐活性關係 175
圖6-23 不同研磨時間污泥灰渣石灰漿XRD分析結果 177
圖6-24 強塑劑劑量與砂漿流度值關係 179
圖6-25 污泥灰渣吸附強塑劑劑量 179
圖6-26 含F型強塑劑污泥灰渣砂漿抗壓強度發展 181
圖6-27 含G型強塑劑污泥灰渣砂漿抗壓強度發展 181
圖6-28 含強塑劑污泥灰渣砂漿相對抗壓強度 182
圖6-29 不同水灰比含F型強塑劑污泥灰渣砂漿抗壓強度發展 184
圖6-30 不同水灰比含G型強塑劑污泥灰渣砂漿抗壓強度發展 185
圖6-31 活化劑劑量與砂漿流度值關係 186
圖6-32 含氯化鈣污泥灰渣砂漿抗壓強度發展 187
圖6-33 含硫酸鈉污泥灰渣砂漿抗壓強度發展 187
圖6-34 含活化劑污泥灰渣砂漿相對抗壓強度 188
圖6-35 含氯化鈣污泥灰渣石灰漿齡期第3天XRD分析結果 189
圖6-36 含氯化鈣污泥灰渣石灰漿齡期第3天TGA分析結果 191
圖6-37 含硫酸鈉污泥灰渣石灰漿齡期第3天XRD分析結果 192
圖6-38 含硫酸鈉污泥灰渣石灰漿齡期第3天TGA分析結果 1943
表 目 錄
頁次
表2-1 日本1988年下水污泥處理處置情形 8
表2-2 日本1993年下水污泥處理處置情形 8
表2-3 新加坡污水處理量及污泥產生量 8
表2-4 歐盟國家下水污泥產生量及處理處置情形 10
表2-5 美國公有污水處理廠污泥處理處置方式 10
表2-6 台灣地區都市污水處理廠污泥處理與處置現況 11
表2-7 下水污泥材料化應用實例 13
表2-8 各種下水污泥資源化技術匯整與比較 17
表2-9 數種下水污泥灰渣主要成分之比較 20
表2-10 數種下水污泥灰渣燒失量之比較 20
表2-11 數種下水污泥灰渣重金屬含量之比較 22
表2-12 數種下水污泥灰渣物理特性之比較 24
表2-13 卜特蘭水泥中主要礦物成分 27
表2-14 卜特蘭水泥主要性質 27
表2-15鋁酸三鈣水化產物類型 31
表2-16 卜特蘭水泥礦物水化反應特性 35
表2-17 水泥漿體孔隙尺寸典型分類 38
表2-18 準高嶺石及矽灰性質 44
表2-19卜作嵐材料分類 45
表3-1 本研究下水污泥採樣地點與日期 68
表3-2 本研究試驗項目及分析方法一覽 70
表3-3 感應藕合電漿儀偵測極限 78
表3-4 下水污泥灰渣及對照材料分析項目 95
表3-5 強度活性指數分析試程配置 95
表3-6 污泥灰渣石灰漿及水泥漿製備試程配置 96
表3-7 污泥灰渣取代砂漿骨材試程配置 96
表3-8 污泥灰渣取代砂漿水泥試程配置 97
表3-9 灼燒污泥灰渣分析項目 97
表3-10 灼燒污泥灰渣強度活性指數分析試程配置 97
表3-11 灼燒污泥灰渣石灰漿及水泥漿製備試程配置 98
表3-12 灼燒污泥灰渣取代砂漿水泥試程配置 98
表3-13 機械研磨污泥灰渣分析項目 99
表3-14 機械研磨污泥灰渣強度活性指數分析試程配置 99
表3-15 機械研磨污泥灰渣石灰漿製備試程配置 100
表3-16 強塑劑應用於污泥灰渣砂漿試程配置 100
表3-17 活化劑應用於污泥灰渣砂漿試程配置 102
表3-18 含活化劑污泥灰渣石灰漿製備試程配置 102
表4-1 下水污泥基本性質 104
表4-2 下水污泥灰渣物理性質 106
表4-3 下水污泥灰渣化學組成 109
表4-4 下水污泥灰渣TCLP分析結果 111
表4-5 下水污泥灰渣燒失量 113
表4-6 下水污泥灰渣非健性物質 113
表4-7 下水污泥灰渣卜作嵐性質 117
表4-8 含石灰污泥灰渣化學組成 121
表4-9 含石灰污泥灰渣卜作嵐性質 122
表5-1 新拌污泥灰渣砂漿組成 145
表6-1 二次灼燒污泥灰渣物理性質 151
表6-2 污泥灰渣砂漿改良技術綜合比較 197
參考文獻 Alleman, J.E., and Berman, N.A., “Constructive sludge management: biobrick,” J. Environmental Engineering, ASCE, Vol.110, No.2, pp.301-311 (1984).
Alleman, J.E., Bryan, E.H., Stumm, T.A., Marlow, W.W., and Hocevar, R.C., “Sludge-amended brick production: applicability for metal-laden residues”, Water Science Technology, Vol.22, No.12, pp.309-317 (1990).
Al Sayed, M.H., Madany, I.M., and Buali, A.R.M., “Use of sewage sludge ash in asphaltic paving mixes in hot regions”, Construction Building Materials, Vol.9, No.1, pp.19-23 (1995).
Anderson, M., Skerratt, R.G., Thomas, J., and Clay, S.D., “Case study involving using fluidised bed incinerator sludge ash as a partial clay substitute in brick manufacture”, Water Science Technology, Vol.34, No.3-4, pp.507-515 (1996).
Aziz, A., Lawrence, C.C.K., “Potential utilization of sewage sludge”, Water Science Technology, Vol.22, No.12, pp.277-285 (1990).
Balashov, S.V., and Boronin, A.M., “Sewage-sludge isolates decomposing sulfoaromatic compounds”, Microbiology, Vol.65, No.5, pp.549-552 (1996).
Bhatty, J.I., and Reid, K.J., “Compressive strength of municipal sludge ash mortars”, ACI Materials J., Vol.86, No.4, pp.394-400 (1989).
Biernacki, J.J., Williams, P.J., and Stutzman, P.E., “Kinetics of reaction of calcium hydroxide and fly ash”, ACI Materials J., Vol.98, No.4, pp.340-349 (2001).
Biricik, H., Akoz, F., Berktay, I., and Tulgar, A.N., “Study of pozzolanic properties of wheat straw ash”, Cement Concrete Research, Vol.29, No.1, pp.637-643 (1999).
Bonen, D., and Sarkar, S.L., “The superplasticizer adsorption capacity of cement pastes, pore solution composition, and parameters affecting flow loss”, Cement Concrete Research, Vol.25, No.7, pp.1423-1434 (1995).
Bonen, D., and Khayat, K.H., “Characterization and pozzolanic properties of silica fume stored in an open pond”, Cement Concrete Research, Vol.25, No.2, pp.395-407 (1995).
Bridle, T., “Fuel first”, Water Quality International, No.4, pp.20-21 (1997).
Brough, A.R., Dobson, C.M., Richardson, I.G., and Groves, G.W., “A study of the pozzolanic reaction by solid-state 29Si nuclear magnetic resonance using selective isotopic enrichment”, J. Materials Science, Vol.30, pp.1671-1678 (1995).
Carette, G.G., and Malhotra, V. M., “Characterization of Canadian fly ashes and their relative performance in concrete”, Canadian J. Civil Engineering, Vol.14, No.5, pp.667-682 (1987).
Cargill, G.D., Cook, E.J., and Richard, S., “Biosolids marketing,” Water Environment Technology, Vol.9, No.9, pp.87-91 (1997).
Chan, M.Y., and Ouyang, C.F., “Feasibility study of two sewage sludge slag as fine aggregate”, Proceeding of Sludge Management Entering the 3rd Millenium, Taipei, pp.440-449 (2001).
Chatterji, S., Discussion of “Mercury porosimetry an inappropriate method for the measurement of pore size distributions in cement-based materials” by S. Diamond, Cement Concrete Research, Vol.31, No.11, pp.1657-1658 (2001).
Chen, H.M., and Ouyang, C.F., “The characteristics of melting process on sewage sludge cake”, Proceeding of Sludge Management Entering the 3rd Millenium, Taipei, pp.223-229 (2001).
Cheremisinoff, P. N., Sludge Management and Disposal, Prentice-Hall, Inc., New Jersey (1994).
Cheriaf, M., Rocha, C., and Pera, J., “Pozzolanic properties of pulverized coal combustion bottom ash”, Cement Concrete Research, Vol.29, No.1, pp.1387-1391 (1999).
Clark, S.M., Morisson, G.R., and Shi, W.D., “The use of scanning transmission X-ray microscopy for the real-time study of cement hydration”, Cement and Concrete Research, Vol.29, No.8, pp.1099-1102 (1999).
Cong, X., Gong, S., Darwin, D., and McCabe, S.L., “Role of silica fume in compressive strength of cement paste, mortar, and concrete”, ACI Materials J., Vol.89, No.4, pp.375-387 (1992).
Cook, R.A., and Hover, K.C., “Mercury porosimetry of cement-based materials and associated correction factors”, ACI Materials J., Vol.90, No.2, pp.152-161 (1993).
Day, R.L., and Shi, C., “Influence of the fineness of pozzolan on the strength of lime natural-pozzolan cement pastes”, Cement Concrete Research, Vol.24, No.8, pp.1485-1491 (1994).
Demirbas, A., Karslioglu, S., and Ayas, A., “Utilization of lignite ash in concrete mixture”, Cement Concrete Research, Vol.25, No.8, pp.1610-1614 (1995).
Diamond, S., “Mercury porosimetry an inappropriate method for the measurement of pore size distributions in cement-based materials”, Cement Concrete Research, Vol.30, No.10, pp.1517-1525 (2000).
Eaton, A.D., Clesceri, L.S., and Greenberg, A.E., (Ed.), Standard Methods for the Examination of Water and Wastewater, 19th Ed., APHA, AWWA, WEF (1995).
El-Didamony, H., Sharara, A.M., Helmy, I.M., and Adb El-Aleem, S., “Hydration characteristics of b-C2S in the presence of some accelerators”, Cement Concrete Research, Vol.26, No.8, pp.1117-1187 (1996).
Erdodgu, K., and Turker, P., “Effect of fly ash particle size on strength of portland cement fly ash mortars”, Cement Concrete Research, Vol.28, No.9, pp.1217-1222 (1998).
Escalante, J.I., Mendoza, G., Mancha, H., Lopez, J., and Vargas, G., “Pozzolanic properties of a geothermal silica waste material”, Cement Concrete Research, Vol.29, No.8, pp.623-625 (1999).
Gagne, R., Boisvert, A., and Pigeon, M., “Effect of superplasticizer dosage on mechanical properties, permeability, and freeze-thaw durability of high-strength concretes with and without silica fume”, ACI Materials J., Vol. 93, No.2, pp.111-120 (1996).
Galle, C., “Effect of drying on cement-based materials pore structure as identified by mercury intrusion porosimetry a comparative study between oven-, vacuum-, and free-drying”, Cement Concrete Research, Vol.31, No.10, pp.1467-1525 (2001).
Gartner, E.M., Kurtis, K.E., and Monteiro, P.J.M., “Porposed mechanism of C-S-H growth tested by soft X-ray microscopy”, Cement and Concrete Research, Vol.30, No.5, pp.817-822 (2000).
Groves, G.W., and Richardson, I.G., “Microcrystalline calcium hydroxide in pozzolanic cement pastes”, Cement Concrete Research, Vol.24, No.6, pp.1191-1196 (1994).
Grzeszczyk, S., and Lipowski, G., “Effect of content and particle size distribution of high-calcium fly ash on the rheological properties of cement pastes”, Cement Concrete Research, Vol.27, No.6, pp.907-916 (1997).
Hauser, A., Eggenberger, U., and Peters, T., “Origin and characterisation of fly ashes from cellulose industries containing high proportions of free lime and anhydrite”, Cement Concrete Research, Vol.29, No.10, pp.1569-1573 (1999).
He, C., Osbaeck, B., and Makovicky, E., “Pozzolanic reactions of six principal clay minerals: activation, reactivity assessments and technology effects”, Cement Concrete Research, Vol.25, No.8, pp.1691-1702 (1995).
He, C., Makovicky, E., and Osback, B., “Thermal treatment and pozzolanic activity of sepiolite”, Applied Clay Science, Vol.10, No.6, pp.341-349 (1996).
He, C., Makovicky, E., and Osback, B., “Thermal treatment and pozzolanic activity of Na-and Ca-montmorillonite”, Applied Clay Science, Vol.10, No.2, pp.351-368 (1996).
Hiraoka, M., “Advanced sludge thermal processes in Japan”, Water Science Technology, Vol.30, No.8, pp.139-148 (1994).
Hsuan, Y., “Thermogravimetric analyzer for geosynthetic materials”, Geotechnical Fabrics Report, No.11, pp.18-21 (1991).
Jenkins, R., and Snyder, R.L., Introduction to X-ray Powder Diffractometry, John Wiley & Sons, Inc., New York (1996).
Jennings, H.M., “A model for the microstructure of calcium silicate hydrate in cement paste”, Cement Concrete Research, Vol.30, No.1, pp.101-106 (2000).
Jeyaseelan, S., and Qing, L.G., “Development of adsorbent/catalyst from municipal wastewater sludge”, Water Science Technology, Vol.34, No.3-4, pp.499-505 (1996).
Katz, A., “Microscopic study of alkali-activated fly ash”, Cement Concrete Research, Vol.28, No.2, pp.197-208 (1998).
Khanbilvardi, R., and Afahari, S., “Sludge ash as fine aggregate for concrete mix”, J. Environmental Engineering, ASCE, Vol.121, No.9, pp.633-638 (1994).
Kovacs, R., “Effect of the hydration products on the properties of fly ash cements”, Cement Concrete Research, Vol.5, No.1, pp.73-82 (1975).
Kovler, K., “Setting and hardening of gypsum-portland cement-silica fume blends, Part 1: temperature and setting expansion”, Cement Concrete Research, Vol.28, No.3, pp.423-437 (1998).
Lilkov, V., and Stoitchkov, V., “Effect of the “Pozzolit” active mineral admixture on the properties of cement mortars and concretes”, Cement Concrete Research, Vol.26, No.7, pp.1073-1081 (1996).
Lin, D.F., and Weng, C.H., “Use of sewage sludge ash as brick material”, J. Environmental Engineering, ASCE, Vol.127, No.10, pp.922-927 (2001).
Loretto, M.H., Electron Beam Analysis of Materials, 2nd Ed., Chapman & Hall, London (1994).
Lue-Hing, C., Zenz, D.R., and Kuchenrither, R. (Ed.), Municipal Sewage Sludge Management, Technomic Publishing, Lancaster, Pennsylvania (1992).
Macias, A., and Goni, S., “Characterization of admixture as plasticizer or superplasticizer by deflocculation test”, ACI Materials J., Vol.96, No.1, pp40-46 (1999).
Matthews, P. (Ed.), A Global Atlas of Wastewater Sludge and Biosolids Use and Disposal, International Association on Water Quality, London (1996).
McCarter, W.J., and Tran, D., “Monitoring pozzolanic activity by direct activation with calcium hydroxide”, Construction Building Materials, Vol.10, No.3, pp.179-184 (1996).
Mehta, P.K., Concrete, Structure, Properties, and Materials, Prentice-Hall, Inc., New Jersey (1986).
Metcalf & Eddy, Inc., Wastewater Engineering Treatment, Disposal, and Reuse, McGraw-Hill, Inc., New York (1991).
Mindess, S., and Young, J.F., Concrete, Prentice-Hall, Inc., New Jersey (1981).
Monzo, J., Paya, J., and Peris-Mora, E., “A preliminary study on fly ash granulometric influence on mortar strength”, Cement Concrete Research, Vol.24, No.4, pp.791-796 (1994).
Monzo, J., Paya, J., Borrachero, M.V., and Corcoles, A., “Use of sewage ash (SSA) - cement admixtures in mortars”, Cement Concrete Research, Vol.26, No.9, pp.1389-1398 (1996).
Monzo, J., Paya, J., Borrachero, M.V., and Peris-Mora, E., “Mechanical behavior of mortars containing sewage sludge ash (SSA) and portland cements with different tricalcium aluminate content”, Cement Concrete Research, Vol.29, No.1, pp.87-94 (1999).
National Research Council, Use of Reclaimed Water and Sludge in Food Crop Production, National Academy Press, Washington, D.C. (1996).
Oriol, M., and Pera, J., “Pozzolanic activity of metakaolin under microwave treatment”, Cement Concrete Research, Vol.25, No.2, pp.265-270 (1995).
Paya, J., Monzo, J., Borrachero, M.V., and Peris-Mora, E., “Mechanical treatments of fly ash. Part I: physico-chemical characterization of ground fly ashes”, Cement Concrete Research, Vol.25, No.7, pp.1469-1479 (1995)
Paya, J., Monzo, J., Borrachero, M.V., Peris-Mora, E., and Gonzalez-Lopez, E., “Mechanical treatments of fly ash. Part II: particle morphologies in ground fly ash (GFA) and workability of GFA-cement mortars”, Cement Concrete Research, Vol.26, No.2, pp.225-235 (1996).
Paya, J., Monzo, J., Borrachero, M.V., Peris, E., and Gonzalez-Lopez, E., “Mechanical treatment of fly ash. Part Ⅲ: studies on strength development of ground fly ash (GFA)-cement mortars”, Cement Concrete Research, Vol.27, No.9, pp.1365-1377 (1997).
Paya, J., Monzo, J., Borrachero, M.V., Peris, E., and Amahjour, F., “Thermogravimetric methods for determining carbon content in fly ashes”, Cement Concrete Research, Vol.28, No.5, pp.675-686 (1998).
Paya, J., Borrachero, M.V., Monzo, J., and Bonilla, M., “Properties of portland cement mortars incorporating high amounts of oil-fuel ashes”, Waste Management, Vol.19, No.1, pp.1-7 (1999).
Paya, J., Monzo, J., Borrachero, M.V., Mellado, A., and Ordonez, L.M., “Determination of amorphous silica in rice husk ash by a rapid analytical method”, Cement Concrete Research, Vol.31, No.2, pp.227-231 (2001).
Pera, J., Boumaza, R., and Ambroise, J., “Development of a pozzolanic pigment from red mud”, Cement Concrete Research, Vol.27, No.10, pp.1513-1522 (1997).
Pera, J., and Amrouz, A., “Development of highly reactive metakaolin from paper sludge”, Cement Basic Material, Vol.7, No.3, pp.49-56 (1998).
Peris-Mora, E., Paya, J., and Monzo, J., “Influence of different sized fractions of a fly ash on workability of mortars”, Cement Concrete Research, Vol.23, No.4, pp.917-924 (1993).
Punkki, J., Golaszewski, J., and Gjorv, O.E., “Workability loss of high-strength concrete”, ACI Materials J., Vol.93, No.5, pp.427- 431 (1996).
Ramachandran, V.S., “Alkali-aggregate expansion inhibition admixtures”, Cement Concrete Composites, Vol.20, No.1, pp.149-161 (1998).
Ranganath, R.V., Bhattacharjee, B., and Krishnamoorthy, S., “Influence of size fraction of ponded ash on its pozzolanic activity”, Cement Concrete Research, Vol.28, No.5, pp.749-761 (1998).
Richardson, I.G., “The nature of C-S-H in hardened cements”, Cement Concrete Research, Vol.29, No.8, pp.1131-1147 (1999).
Richardson, I.G., “The nature of hydration products in hardened cement pastes”, Cement Concrete Composites, Vol.22, No.2, pp.97-113 (2000).
Salvador, S., “Pozzolanic properties of flash-calcined kaolinite: a comparative study with soak-calcined products”, Cement Concrete Research, Vol.25, No.1, pp.102-112 (1995).
Sanchez de Rojas, M.I., and Frias, M., “The pozzolanic activity of different materials, its influence on the hydration heat in mortars”, Cement Concrete Research, Vol.26, No.2, pp.203-213 (1996).
Sharara, A.M., El-Didamony, H., Ebied, E., and El-Aleem, A., “Hydration characteristics of b-C2S in the presence of some pozzolanic materials”, Cement Concrete Research, Vol.24, No.5, pp.966-974 (1994).
Sharma, R.C., Jain, N.K., and Ghosh, S.N., “Semi-theoretical method for the assessment of reactivity of fly ashes”, Cement Concrete Research, Vol.23, No.1, pp.41-45 (1993).
Shi, C., “Pozzolanic reaction and microstructure of chemical activated lime-fly ash pastes”, ACI Materials J., Vol.95, No.5, pp.537-545 (1998).
Shi, C., and Day, R.L., “Chemical activation of blend cements made with lime and natural pozzolans”, Cement Concrete Research, Vol.23, No.6, pp.1389-1396 (1993).
Shi, C., and Day, R.L., “Acceleration of the reactivity of fly ash by chemical activation”, Cement Concrete Research, Vol.25, No.1, pp.15-21 (1995).
Shi, C., and Day, R.L., “Pozzolanic reaction in the presence of chemical activators, Part I. Reaction kinetics”, Cement Concrete Research, Vol.30, No.1, pp.51-58 (2000).
Shi, C., and Day, R.L., “Pozzolanic reaction in the presence of chemical activators, Part II. Reaction products and mechanism”, Cement Concrete Research, Vol.30, No.4, pp.607-613 (2000).
Singh, M., and Garg, M., “Cementitious binder from fly ash and other industrial wastes”, Cement and Concrete Research, Vol.29, No.1, pp.309-314 (1999).
Slanicka, S., “The influence of fly ash on the strength of concrete”, Cement Concrete Research, Vol.21, No.2-3, pp.285-296 (1991).
Smith, P.G., “Thermal treatment and ultimate disposal of sewage sludge in Japan”, J. Institution of Water and Environmental Management, Vol.6, No.6, pp.653-658 (1992).
Sopper, W.E., Municipal Sludge Use in Land Reclamation, Lewis Publishers, Boca Raton, Florida (1993).
Storeven, P., Bui, D.D., and Sabuni, E., “Ash of vegetable waste used for economic production of low to high strength hydraulic binders”, Fuel, Vol.78, No.7, pp.153-159 (1999).
Stumm, W., and Morgan, J.J., Aquatic Chemistry, 2nd Ed., John Wiley & Sons, New York (1981).
Tamai, M., Yoshida, K., and Kuromatsu, A., “Reduction in environmental load with eco-cement and porous concrete”, Proceeding of International Conference on Cleaner Production and Sustainable Development ’99, Taipei, pp.20-33 (1999).
Tanaka, I., Suzuki, N., Ono, Y., and Koishi, M., “Fluidity of spherical cement and mechanism for creating high fluidity”, Cement Concrete Research, Vol.28, No.1, pp.63-74 (1998).
Tashiro, C., Ikeda, K., and Inoue, Y., “Evaluation of pozzolanic activity by the electric resistance measurement method”, Cement Concrete Research, Vol.24, No.6, pp.1133-1139 (1994).
Tattersall, G.H., and Banfill, P.F.G., The Rheology of Fresh Concrete, Pitman Publishing Inc., Marshfield, Massachusetts (1983).
Tay, J.H., “Sludge ash as filler for portland cement concrete”, J. Environmental Engineering, ASCE, Vol.113, No.2, pp.345-351 (1987).
Tay, J.H., “Bricks manufactured from sludge,” J. Environmental Engineering, ASCE, Vol.113, No.2, pp.278-284 (1987).
Tay, J.H., and Show, K.Y., “Reuse of wastewater sludge in manufacturing non-conventional construction materials - an innovative approach to ultimate sludge disposal”, Water Science and Technology, Vol.26, No.5-6, pp.1165-1174 (1992).
Tay, J.H., and Show, K.Y., “The use of lime-blended sludge for production of cementitious material”, Water Environment Research, Vol.64, No.1, pp.6-12 (1992).
Tay, J.H., and Show, K.Y., “Municipal wastewater sludge as cementitious and blended cement materials,” Cement Concrete Composites, Vol.16, pp.39-48 (1994).
Tay, J.H., and Yip, W.K., “Sludge ash as lightweight concrete material”, J. Environmental Engineering, ASCE, Vol.115, No.1, pp.56-64 (1989).
Tay, J.H., Yip, W.K., and Show, K.Y., “Clay-blended sludge as lightweight aggregate concrete material”, J. Environmental Engineering, ASCE, Vol.117, No.6, pp.834-844 (1991).
Torrents, J.M., Roncero, J., and Gettu, R., “Utilization of impedance spectroscopy for studying the retarding effect of a superplasticizer on the setting of cement”, Cement Concrete Research, Vol.28, No.9, pp.1325-1333 (1998).
Trauner, E.J., “Sludge ash bricks fired to above and bellow ash-vitrifying temperature”, J. Environmental Engineering, ASCE, Vol.119, No.3, pp.506-519 (1993).
U.S. EPA, Land Application of Biosolids Process Design Manual, U.S. Environmental Protection Agency, Cincinnati, Ohio (1996).
Vaananen, P., “Fuel, methane gas and fertilisers from sludge”, Asian Water, Vol.14, No.1, pp.32-34 (1998).
Wasserman, R., and Bentur, A., “Effect of lightweight fly ash aggregate microstructure on the strength of concrete”, Cement Concrete Research, Vol.27, No.4, pp.525-537 (1997).
Wild, S., Discussion of “Mercury porosimetry an inappropriate method for the measurement of pore size distributions in cement-based materials” by S. Diamond, Cement Concrete Research, Vol.31, No.11, pp.1653-1654 (2001).
Wild, S., and Khatib, J.M., “Portlandite consumption in metakaolin cement pastes and mortars”, Cement Concrete Research, Vol.27, No.1, pp.137-146 (1997).
Xu, G.J.Z., and Watt, D.F., and Hudec, P.P., “Effectiveness of mineral admixtures in reducing ASR expansion”, Cement Concrete Research, Vol.25, No.6, pp.1225-1236 (1995).
Yan, P., and You, Y., “Studies of the binder of fly ash-fluorgypsum-cement”, Cement Concrete Research, Vol.28, No.1, pp.135-140 (1998).
Yu, Q., Sawayama, K., Sugita, S., Shoya, M., and Isojima, Y., “The reaction between rice husk ash and Ca(OH)2 solution and the nature of its product”, Cement Concrete Research, Vol.29, No.3, pp.37-43 (1999).
Zanni, H., Cheyrezy, M., and Maret, V., “Investigation of hydration and pozzolanic reaction in reactive powder concrete (RPC) using 29Si NMR”, Cement Concrete Research, Vol.26, No.1, pp.93-100 (1996).
Zhang, M.H., and Malhorta, V.M., “Characteristics of a thermally activated alumino-silicate pozzolanic material and its use in concrete”, Cement Concrete Research, Vol.24, No.5, pp.966-974 (1994).
Zhang, C., Wang, A., and Tang, M., “The filling role of pozzolanic material”, Cement Concrete Research, Vol.26, No.6, pp.943-947 (1996).
張鎮南、黃俊雄、林世祥,「應用臭氧回收廢棄污泥含碳有機物質之研究」,第10屆下水道技術研討會論文集,台北,pp.95-102 (2000)。
詹孟贇、李釗、歐陽嶠暉,「都市下水污泥熔渣細骨材利用可行性之研究」,第十屆廢棄物處理技術研討會論文集,pp.54-63 (1995)。
陳立俊、張立、梁鉅銘、林文台、楊哲人、鄭晃忠,材料電子顯微鏡學,修訂版,行政院國家科學委員會精密儀器發展中心,新竹 (1994)。
邱承美,儀器分析原理,科文出版社,台北 (1981)。
戴岳志、李建賢,「加速推動下水道建設執行對策」,第11屆下水道及水環境再生研討會論文集,台北,pp.1-14 (2001)。
黃兆龍,混凝土配比設計與控制,詹氏書局,台北 (2000)。
江康鈺、張今濃、黃煌竣,「下水污泥堆肥資源化過程重金屬分佈特性之研究」,第11屆下水道及水環境再生研討會論文集,台北,pp.211-221 (2001)。
江康鈺、林鶴年、游世達、嚴浩哲、黃俊傑、林莞慧、王鯤生,「利用堆肥資源化技術處理下水污泥之可行性研究」,第9屆下水道技術研討會論文集,台北,pp.277-290 (1999)。
李釗、江少鋒、郭文田,「垃圾焚化灰渣作為混凝土細骨材之可行性研究」,中國環境工程學刊,Vol.7,No.3,pp.289-296 (1997)。
林登峰、傅國柱、翁誌煌、曾志晏、邱玟韶,「家庭廢水污泥與黏土燒製成磚之資源化研究」,第9屆下水道技術研討會論文集,台北,pp.291-304 (1999)。
林仁益、沈永年、黃兆龍,「29Si NMR解析水灰比、養護溫度與水泥漿體水化行為之相關性」,中國土木水利學刊,Vol.3,pp.255-265 (1991)。
林益厚,「內政部營建署署長致詞」,第10屆下水道技術研討會論文集,台北 (2000)。
羅鈞瑋、張鎮南、黃俊雄,「應用化學方式加速污泥水解以回收有機成份之研究」,第9屆下水道技術研討會論文集,台北,pp.223-238 (1999)。
歐陽嶠暉、許鎮龍、藍文忠,「都市污水處理廠之污泥處理與資源化再利用之研究」,第8屆下水道技術研討會論文集,台北,pp.19-33 (1998)。
沈君山、李怡嚴,固態與核子物理,科學圖書社,台北 (1972)。
沈得縣、黃兆龍,「高爐熟料與飛灰對新拌水泥漿體水化機理影響之研究」,中國土木水利工程學刊,Vol.3,No.4,pp.333-338 (1991)。
田中和博、佐藤和明,「日本下水污泥處理處置及利用近況」,第7屆下水道技術研討會論文集,中壢,pp.17-31 (1996)。
蔡攀鰲,土木材料試驗,三民書局,台北 (1986)。
曾迪華、葉俊宏,都市污水廠污泥脫水性和燃燒值改良之研究,中央大學土木工程研究所,中壢 (1985)。
曾迪華、葉仁博,以機械脫水和自然乾燥法進行污泥脫水性和燃燒值改良之研究,中央大學土木工程研究所,中壢 (1987)。
王鯤生、張毓舜、林凱隆、黃尊謙,「下水污泥焚化灰渣組成對燒結材料特性之影響」,第9屆下水道技術研討會論文集,台北,pp.211-222 (1999)。
王鯤生、余岳峰、蔡振球、楊志政,「下水污泥焚化灰燒成輕質骨材之條件控制因子探討」,第10屆下水道技術研討會論文集,台北,pp.119-127 (2000)。
王鯤生、楊志政、蔡振球、胡趙原,「下水污泥灰矽晶相調質之輕質化燒結特性研究」,第11屆下水道及水環境再生研討會論文集,台北,pp.187-194 (2001)。
尾花博,「新資源再利用體系-環保水泥」,87年廢棄物處理與資源回收國際研討會論文集,台北 (1998)。
參考標準方法與規範
ASTM C 109/C 109M-98, Standard Test Methods for Compressive Strength of Hydraulic Cement Mortars (Using 2-in or [50-mm] Cube Specimens), American Society for Testing and Materials.
ASTM C 136-01, Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates, American Society for Testing and Materials.
ASTM C 150-89, Standard Specifications for Portland Cement, American Society for Testing and Materials.
ASTM C 187-98, Standard Test Method for Normal Consistency of Hydraulic Cement, American Society for Testing and Materials.
ASTM C 188-89, Standard Test Method for Density of Hydraulic Cement, American Society for Testing and Materials.
ASTM C 191-01a, Standard Test Method for Time of Setting of Hydraulic Cement by Vicat Needle, American Society for Testing and Materials.
ASTM C 204-91a, Standard Test Method for Fineness of Hydraulic Cement by Air Permeability Apparatus, American Society for Testing and Materials.
ASTM C 230-97, Standard Specification for Flow Table for Use in Tests of Hydraulic Cement, American Society for Testing and Materials.
ASTM C 311-98, Standard Test Methods for Sampling and Testing Fly Ash or Natural Pozzolan for Use as a Mineral Admixture in Portland-Cement Concrete, American Society for Testing and Materials.
ASTM C 311-90, Standard Test Methods for Sampling and Testing Fly Ash or Natural Pozzolan for Use as a Mineral Admixture in Portland-Cement Concrete, American Society for Testing and Materials.
ASTM C 332-99, Standard Specification for Lightweight Aggregates for Insulating Concrete, American Society for Testing and Materials.
ASTM C 494/C 494M-99ae, Standard Specification for Chemical Admixtures for Concrete e, American Society for Testing and Materials.
ASTM C 618-98, Standard Specifications for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use as a Mineral Admixture in Concrete, American Society for Testing and Materials.
ASTM C 778-00, Standard Specification for Standard Sand, American Society for Testing and Materials.
ASTM D 4404-84, Standard test method for determination of pore volume and pore size distribution of soil and rock by mercury intrusion porosimetry, American Society for Testing and Materials.
ASTM E 12-70, Standard Definitions of Terms Relating to Density and Specific Gravity of Solids, Liquids, and Gases, American Society for Testing and Materials.
BS 812: Part 3:1975, Testing Aggregates. Methods for Determination of Mechanical Properties, British Standards Institution.
BS 3892: Part 1:1997, Pulverised-Fuel Ash-Cementitious Component in Concrete, British Standards Institution.
CNS-61,「卜特蘭水泥」,經濟部標準檢驗局。
CNS-3036,「卜特蘭水泥混凝土用飛灰及天然或煆燒卜作嵐攙和物」,經濟部標準檢驗局。
NIEA R201.10T,「事業廢棄物毒性特性溶出程序」,行政院環境保護署。
指導教授 曾迪華(Dyi-Hwa Tseng) 審核日期 2002-7-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明