博碩士論文 86346004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:26 、訪客IP:44.197.197.23
姓名 白子易( TzuYi Pai)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 下水道系統生化動力模式建立之研究
(A Study on Establishment of the Biochemical Kinetic Models in the Sewer System)
相關論文
★ 變動負荷特性與殘留基質對缺氧釋磷攝磷現象之探討★ 重力式下水道中溶氧傳輸及水質轉化之研究
★ AOAO污水處理程序去除營養鹽之特性研究★ 生物擔體渠道淨化二級生物處理放流水氮化物之特性探討
★ 浸水式生物濾床處理污水營養物質之研究★ 併同生物膜與活性污泥程序之硝化及脫硝攝磷特性研究
★ 應用分子生物技術進行生物處理程序菌相分析之研究★ 多段式生物濾床併同去除碳、氮、磷之研究
★ MBR除氮系統特性之研究★ 多段進流去氮除磷系統動態處理特性之研究
★ 多段進流去氮除磷系統穩動態處理及 控制特性之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 微生物的生化反應在下水道系統及廢水生物處理程序中相當重要。微生物的反應機制相當複雜,使用數學模式可解釋其動力特性,另外,亦可應用於廢水生物處理程序的規劃、設計、操作、控制及診斷。
本研究的目的為:(1)依據活性污泥模式1 (ASM1) 建立數學模式以描述下水道水質的轉化;(2)依據活性污泥模式2d (ASM2d)及Mixed Culture Biofilm Model (MCBM) 建立修正數學模式以描述A2O,TNCU,TNCU1,AOAO及TNCUO程序中碳氮磷各種成份的轉化;(3)比較各試程實驗值與模式預測值在不同操作狀態下的一致性;(4)以模式分析異營菌(XH)、磷蓄積菌(XPAO)、自營菌(XAUT)等不同微生物族群在不同操作狀態下的動力特性。各種程序之相關水質數據由模廠實驗求得。
在建立下水道水質生化動力模式的研究中,以長21.7 m直徑15 cm的下水道模型探討下水道中溶氧於垂直方向傳輸及水質的變化。依據Fick’s law推導一包括分子擴散項及亂流擴散項的偏微分方程。以非線性最小平方法回歸求得溶氧於垂直方向之水力傳輸函數值。結果顯示,垂直方向之水力傳輸函數值是分子擴散、亂流擴散及流速的函數。在依據ASM1建立數學模式以描述下水道水質轉化的實驗中,模式值與實驗值相當一致,可知底部生物膜是降解污染物的主要貢獻,XH缺氧生長是影響各成份轉化途徑的主要因素;系統中XAUT極少甚至不存在。
在建立活性污泥營養鹽處理程序模式的研究中,模式考慮三項修正:(1)溶解性COD(SS)之生物吸附效應:(2)進流污水中有機氮的水解:(3)厭氧槽中異營菌的生長作用。模型廠進流水水質水量固定,變動操作條件。當系統達到穩態出流時,分別比較五種程序各試程之實驗值與模式值。結果顯示模式值與實驗值相當一致。由此一致性可知,SS之生物吸附效應及進流水中有機氮水解是活性污泥系統中相當重要的效應。其次,可知XH於厭氧槽中進行生長。更進一步間接證明活性污泥營養鹽處理程序內存在脫硝除磷菌。
在A2O,TNCU,及TNCU1程序中,厭氧槽中XH,XPAO及XAUT 的濃度會減少,因為裂解反應是厭氧槽的主要反應。好氧槽中,XH,XPAO及XAUT進行好氧生長而增加。磷蓄積菌體內貯存聚磷酸鹽(XPP)在厭氧槽中會減少,後段好氧槽則增加,最後維持一穩定值。磷蓄積菌體內有機碳貯存物(XPHA)在厭氧槽中會增加而在後段好氧槽中被消耗。最後,XPHA維持一穩定值。另外,TNCU1程序之生物膜行為以ASM2d及MCBM進行模擬,.模擬結果顯示:好氧段溶氧越高,生物膜中XAUT之比率及硝酸氮越高,XI之比率及氨氮降低;XH之比率及SS未明顯隨溶氧變動而改變。
TNCUO及AOAO程序可藉段數的重新配置及分段進流的策略有效去除氮、磷,結果顯示:(1)碳、總磷、總氮的有效去除率分別為86.8~97.6, 92~100及62.9~76.4 %:(2)TNCUO及AOAO程序中微生物的動力特性受到不同操作條件的影響:(3)在前段好氧槽中,因HRT較長及可利用基質較多,故XH,XPAO及XAUT行好氧生長而增加。在分流流入的缺氧槽中,因進流的稀釋作用,XH大量減少;但在有分流流入的缺氧槽中,因供給外部碳源,故脫硝持續進行:(4)在未循環硝化混合液及未於缺氧段添加外部碳源以供脫硝的情況下,TNCUO及AOAO程序亦可有效操作。
本研究結果,實驗值與模式預測值相當一致,模式可應用於實廠操作。
摘要(英) The objectives of this study are listed as follows: (1) to establish a mathematical model based on the kinetic of Activated Sludge Model No.1(ASM1) to describe the water quality variations in the sewer systems, (2) to establish a modified mathematical model based on the kinetic of Activated Sludge Model No.2d (ASM2d) and Mixed Culture Biofilm Model (MCBM) to describe the transformation of different compounds including carbon, nitrogen, and phosphorus in the A2O, TNCU, TNCU1, AOAO and TNCUO processes, (3) to explore the consistency between the calculated and observed values of different components by the modified model under different operation conditions in the processes, and (4) to analyze the kinetics of different microorganisms including heterotrophic organisms(XH), phosphorus accumulating organisms(XPAO), and autotrophic organisms(XAUT) in the processes by using the mathematical model.
In the study of establishing the sewer water quality model, oxygen transfer and water quality variations in gravity sewer pipes were studied in a 21 m long, 0.15 cm diameter model sewer. A partial differential equation that considered the Fick’’s law including the molecular and eddy diffusion terms were derived. The analytic solution of the partial differential equation was used to determine the oxygen transfer function values in the vertical direction by the method of nonlinear regression. The oxygen transfer function in the vertical direction is a function of molecular diffusion, eddy diffusion and flow velocity. In the experiments of the water quality variations in sewer pipe, the model values test values showed a good consistency. The results indicated that the biofilm attached on the pipe bottom predominated the degradation of pollutants. The anoxic growth of XH affected the transformation pathways of different components. XAUT did not exist in the system.
In the study of establishing the nutrient removal activated sludge model, there were three modifications: (1)the biosorption effect of the soluble COD(SS), (2)the ammonification of the organic nitrogen in influent wastewater, and (3)the XH growth in the anaerobic tank. The influent wastewater qualities were fixed and the operation conditions were varied. When a steady state was reached, the comparisons between the model predicted values and measured values in each test were made in five types of processes. It showed a good consistency between them. According to the consistent results, the biosorption effect of SS and ammonification of the organic nitrogen in the influent wastewater were the important effects in activated sludge system. Additionally, the XH might grow in the anaerobic tank. Furthermore, it was indirectly proved that the denitrifying PAOs existed in the nutrient removal activated sludge system.
In A2O, TNCU, and TNCU1 processes, the XH, XPAO, and XAUT would decrease in the anaerobic tank due to the lysis reactions and would increase in the aerobic tank. The polyphosphate (XPP) would decrease in the anaerobic tank and increase in the consequent aerobic tank due to the recovery of XPP level. At last, XPP revealed stable values under different operation conditions. The polyhydroxy-alkanoates (XPHA) would increase in the anaerobic tank and be consumed in the consequent aerobic tank. The concentration of XPHA maintained stable values eventually. On the other hand, the biofilm kinetic characteristics in TNCU1 process was modeled by using ASM2d and MCBM. The results indicated that when dissolved oxygen concentrations increased in the aerobic tank, the fraction of XAUT and nitrate would increase, the fraction of XI and ammonia nitrogen would decrease in the biofilm. The fraction of XH and SS in biofilm would not be affected when dissolved oxygen varied in the aerobic tank.
The nitrogen and phosphorus were removed efficiently in the TNCUO and AOAO processes by compartment reconfiguration and stepwise feeding strategy. The results obtained in this study can be summarized as follows: (1)The effective removal efficiency of carbon, T-P and T-N at 86.8~97.6, 92~100 and 62.9~76.4 %, respectively, were achieved in these testing runs. (2)The microbial kinetics would be affected by different operations. (3)When the step feeding strategy was adopted, the HRT was longer due to the less influent flowrate in the front stages and the microbes would grow in quantities in the aerobic reactors. In the followed anoxic reactors, the microbes would decrease in quantities due to the dilution effect. (4)The TNCUO and AOAO processes could be operated more efficiently without additional energy for nitrified liquid circulation and addition of external carbon substrate for denitrification in the anoxic zones.
Since the model simulation results showed a good consistency with the test values, the model could be applied on operations of the full scale plant.
關鍵字(中) ★ 下水道系統
★ 廢水生物處理
★ 生化動力
★ 數學模式
★ 水質
★ 活性污泥模式
★ 複合式生物膜模式
★ 生物營養鹽去除
關鍵字(英) ★ Sewer System
★ Biological Wastewater Treatment
論文目次 封面
目次
第一章、前言
1.1 研究緣起
1.2 研究目的與內容
第二章、文獻回顧
2.1 數學模式之建構
2.2 建立活性污泥動力模式的基本原理
2.3 建立生物膜動力模式的基本原理
2.4 下水道管道內之生化動力模式
2.5 生物去除營養鹽活性污泥系統
2.6 Activated Sludge Model NO.2d
第三章、實驗材料與方法
3.1 實驗設備及模型廠
3.2 合成污水成份
3.3 檢驗方法
3.4 演算法
第四章、下水道生化動力水質模式建立
4.1 下水道管道氧傳輸行為的探討
4.2 下水道生化動力水質模式之探討
4.3 下水道管道水體各成份傳輸及轉化之途徑
第五章、營養鹽處理程序模式建立
5.1 模式之架構
5.2 A2O程序於MLRR變動時之模式模擬
5.3 TNCU程序於MLRR變動時之模式模擬
5.4 TNCU程序於SRT變動時之模式模擬
5.5 TNCU1程序於好氧段溶氧變動時之模式模擬
5.6 AOAO程序於穩態之模式模擬
5.7 TNCUO程序於穩態之模式模擬
5.8 營養鹽處理程序程序綜合比較
第六章、結論與建議
6.1結論
6.2建議
參考文獻
參考文獻 I.中文部份
書籍:
歐陽嶠暉,”下水道工程學”,長松,民國八十九年,台北。
博碩士論文:
莊順興,”脫氮除磷代謝模式與反應動力之研究”,國立中央大學環境工程學研究所博士論文,民國八十六年,中壢。
陳瞻宇,"重力式下水道中溶氧傳輸及水質轉化之研究",國立中央大學環境工程學研究所碩士論文,民國八十九年,中壢。
張維欽,”生物除磷系統抑制膨化與動態控制之研究”,國立中央大學環境工程學研究所博士論文,民國八十六年,中壢。
張謝淵,”AOAO污水處理程序去除營養鹽之特性研究”,國立中央大學環境工程學研究所博士論文,民國八十九年,中壢。
楊惠娟,”厭氧‧缺氧‧好氧RBC程序之釋磷攝磷及除氮特性之研究”,,國立中央大學環境工程學研究所碩士論文,民國八十五年,中壢。
廖宜慶,"重力式下水道溶氧與生物動力之研究",國立中央大學土木工程學研究所碩士論文,民國八十八年,中壢。
蘇昭郎,”厭氧好氧RBC及活性污泥法去除營養鹽之特性研究”,國立中央大學土木工程學研究所博士論文,民國八十五年,中壢。
研討會論文:
白子易,廖宜慶,歐陽嶠暉,陳瞻宇,呂鴻光,"重力式下水道中氧傳輸係數的探討",第九屆下水道研討會論文集,pp173-181,民國八十八年,台北。
白子易,歐陽嶠暉,陳瞻宇,廖宜慶,呂鴻光,"下水道系統中微量金屬傳輸之模擬",第九屆下水道研討會論文集,pp321-332,民國八十八年,台北。
白子易,廖宜慶,歐陽嶠暉,陳瞻宇,呂鴻光,"重力式下水道中之生物反應動力模式與實驗值之比較",第二十四屆廢水處理技術研討會論文集,pp149-154,民國八十八年,中壢。
白子易,歐陽嶠暉,沈裕智,許智勛,陳瞻宇,呂鴻光,"活性污泥模式2d(ASM2d)於污水廠設計操作的應用",第十屆下水道研討會論文集,pp69-76,民國八十九年,台北。
白子易,歐陽嶠暉,陳瞻宇,李錦地,呂鴻光,許鎮龍,"應用ASM1預測下水道中污染物的變動",第十屆下水道研討會論文集,pp77-84,民國八十九年,台北。
白子易,歐陽嶠暉,蘇昭郎,呂鴻光,康美祝,郭威良,"應用修正活性污泥模式2d模擬TNCU程序於變動混合液循環比時穩態出流水質",第二十五屆廢水處理技術研討會論文集,pp91-97,民國八十九年,中壢。
周裕然,白子易,歐陽嶠暉,劉文佐,"多段厭氧、缺氧、好氧強化活性污泥法去除氮、磷之研究",第二十四屆廢水處理技術研討會論文集,pp103-108,民國八十八年,中壢。
陳瞻宇,白子易,歐陽嶠暉,李錦地,呂鴻光,郭威良,"流速對下水道生物膜動力之影響",第二十五屆廢水處理技術研討會論文集,pp124-128,民國八十九年,中壢。
廖宜慶、周憲德、歐陽嶠暉、白子易、陳瞻宇,〝重力式下水道中氧傳輸係數之探討〞,第10屆水利工程研討會,台中市逢甲大學,ppC52-C57,民國八十八年,台中。
II.英文部份
Ajbar A. and Ibrahim G. (1997). Periodic and nonperiodic oscillatory behavior in a model for activated sludge reactors, Mathl. Comput. Modelling, 25(10), 9-27.
APHA AWWA WEF (1995) Standard Methods for the Examination of Water and Wastewater, 19th ed. American Public Health Association/American Water Works Association/Water Environment Federation, Washington DC.
Bjerre H.L., Hvitved-Jacobsen T., Schlegel S. and Teichgraber B. (1998a). Biological activity of biofilm and sediment in the Ernscher river, Germany, Wat. Sci. Tech., 37(1), 9-16.
Bjerre H.L., Hvitved-Jacobsen T., Schlegel S. and Teichgraber B. (1998b). Modeling of aerobic wastewater transformations under sewer conditions in the Ernscher River, Germany, Environ. Sci. Tech., 70(6), 1151-1160.
Balmer P. and Tagizadeh-Nasser M. (1995). Oxygen transfer in gravity flow sewers, Wat. Sci. Tech., 31(7), 127-135.
Carslaw H.S. and Jaeger J.C. (1959). Conduction of heat in solids, Clarendon Press, Oxford, U.K.
Chapra S.C. (1997). Surface water-quality modeling, McGraw-Hill, New York.
Characklis W. and Marshall K.C. (1990). Biofilm, Wiley, New York.
Churchill M.A., Elmore H.L. and Buckingham R.A.(1962). The prediction of stream reaeration rates, J. Sanit. Engrg. Div., ASCE, 88(4), 1-46.
Cloete T.E. and Muyima N.Y.O. (1997). Microbial community analysis: The key to the design of biological wastewater treatment systems, IAWQ, London.
Coen F., Vanderhaegen B, Boonen I., Vanrolleghem P.A. and van Meenen P. (1997). Improved design and control of industrial and municipal nutrient removal plants using dynamic model, Wat. Sci. Tech., 35(10), 53-61.
Comeau Y., Hall K.J., Hancock R.E.W. and Oldham W.K. (1986). Biochemical model for enhanced biological phosphorus removal, Wat. Res., 20, 1511-1521.
Cote M., Grandjean B.P.A., Lessard P. and Thibault J. (1995). Dynamic modelling of the activated sludge process: improving prediction using neural networks, Wat. Res., 29(4), 995-1004.
Crank J. (1975). Mathematics of diffusion. 2nd Ed. Clarendon Press, Oxford, U.K.
Cussler E.L. (1984). Diffusion: Mass transfer in fluid systems. Cambridge Univ. Press, Cambridge, U.K.
Davies J.W., Butler D., Small J.L., Sekuloski V. and Jefferies C. (1998). Gross solids transport and degradation, Wat. Sci. Tech., 37(1), 61-68.
Deinema, M.H., van Loosdrecht M. and Scholten A. (1984). Some physiological characteristics of Acinetobacter spp. accumulating large amounts of phosphate, Wat. Sci. Tech., 17(11-12), 119-125.
Dobbins W.E.(1964). BOD and oxygen relationships in stream, J. San. Eng. Div., ASCE, 94, 319-344.
Ducato R. and Galluzzo M. (1995). Dynamic simulation of a NDBEPR activated sludge process, Computer Chem. Engng., 19, Suppl., S441-S446.
Fujie K., Hu H.Y., Lim B.Y. and Xia H. (1997). Effect of biosorption on the damping of influent fluctuation in activated sludge aeration tanks, Wat. Sci. Tech., 35(7), 79-87.
Furumai H., Kazmi A.A., Fujita M. Furuma Y. and Sasaki K. (1999). Modeling long term nutrient removal in a sequencing batch reactor, Wat. Res., 33(11), 2708-2714.
Gerald C.F. and Wheatley P.O. (1989). Applied Numerical Analysis, 4th Ed. Addison-Wesley, New York.
Gromaire-Mertz M.C., Chebbo G. and Saad M. (1998). Origins and characteristics of urban wet weather pollution in combined sewer systems: the experimental urban catchment “LE MARAIS” in Paris, Wat. Sci. Tech., 37(1), 35-43.
Gujer W. and Boller M. (1990). A mathematical model for rotating biological contactors, Wat. Sci. Tech., 22(1-2), 53-73.
Gujer W. and Wanner O. (1990). Modeling mixed population biofilms, 397-443. In: W.G. Characklis and K.C. Marshall (eds.), Biofilm., Wiley, New York.
Gujer W., Henze M., Mino T. and van Loosdrecht M.C.M. (1999). Activated sludge model no.3, Wat. Sci. Tech., 39(1), 183-193.
Henze M., Grady Jr. C.P.L., Gujer W, Marais G.v.R. and Matsuo T. (1987). Activated sludge model no. 1. Scientific and technical report no.1. International Association on Water Pollution Research and Control, London.
Henze M., Gujer W., Mino T., Matsuo T., Wentzel M.C. and Marais G.v.R. (1995a). Activated sludge model no.2. IAWQ Scientific and technical report no.3, IAWQ, London.
Henze M., Harremoes P., Jansen J.C. and Arvin E. (1995b). Wastewater Treatment: Biological and Chemical Processes, Springer-Verlag, Berlin.
Henze M., Gujer W., Mino T., Matsuo T., Wentzel M.C., Marais G.v.R. and van Loosdrecht M.C.M. (1999). Activated sludge model no.2d, ASM2d , Wat. Sci. Tech., 39(1), 165-182.
Henze M., Gujer W., Mino T. and van Loosdrecht M.C.M. (1999). Activated sludge models: ASM1, ASM2, ASM2d and ASM3, IWA, London.
Hvitved-Jacobsen T., Vollertsen J. and Nielsen P.H. (1998a). A process and model concept for microbial wastewater transformations in gravity sewers, Wat. Sci. Tech., 37(1), 233-241.
Hvitved-Jacobsen, T., Vollertsen J. and Tanaka N. (1998b). Wastewater quality changes during transport in sewers - an integrated aerobic and anaerobic model concept for carbon and sulfur microbial transformations, Wat. Sci. Tech., 38(10), 257-264.
Isaacs W.P. and Gaudy A.F. (1968). Atmospheric oxygenation in a simulated stream, J. San. Eng. Div., ASCE, 88(SA2), 53-58.
Jensen N.Aa. (1994). Air-water oxygen transfer in gravity sewers, Ph.D. Thesis. Env. Lab. Aalborg University, Denmark.
Jensen N.Aa. and Hvitved-Jacobsen T.(1991). Method for Measurement of reaeration in gravity flow sewer using radiotracers, J. Water Pollut. Cont. Fed., 63, 758-767.
Jimenez C.B. and Landa V.H. (1998). Physico-chemical and bacteriological characterization of wastewater from Mexico City, Wat. Sci. Tech., 37(1), 1-8.
Krenkel P.A. and Orlob G.T. (1962). Turbulent diffusion and the reaeration coefficient, J. San. Eng. Dive., ASCE, 88(SA2), 53-58.
Langbein W.B. and Durum W.H.(1967). The aeration capacity of stream, USGS Circular No.542, U.S. Geological Survey, Washington D.C.
Lau Y.L. (1990). Modelling the consumption of dissolved contaminants by biofilm periphyton in open channel, Wat. Res., 24(10), 1269-1274.
Levin G.V. and Shapiro J. (1965). Metabolic uptake of phosphorus by wastewater organisms, J. Water Pollut. Cont. Fed., 37, 800-821.
Lin S.H., Lin T.M., and Leu H.G. (1998). Determination of oxygen diffusion coefficient in wastewaters, J. Env. Eng., ASCE, 116(4), 988-990.
Lukasse L.S., Keesman K.J. and van Straten G. (1999). A recursively identified model for short-term predictions of NH4/NO3-concentrations in alternating activated sludge processes, J. Process. Contr., 9(1), 87-100.
Mamais D. and Jenkins D. (1992). The effect of MCRT and temperature on enhanced biological phosphorus removal, Wat. Sci. Tech., 26(5-6), 955-965.
Miller R.M., Itoyama K., Uda A., Takada H. and Bhat N. (1997). Modeling and control of a chemical waste water treatment plant, Computer Chem. Engng., 21, Suppl., S947-S952.
Mino T., van Loosdrecht M.C.M. and Heijnen J.J. (1998). Microbiology and biochemistry of the enhanced biological phosphate removal process, Wat. Res., 32(11), 3193-3207.
Nielsen P.H., Raunkjar K., Norsker N.H., Jensen N.A. and Hvitved-Jacobsen T. (1992). Transformation of wastewater in sewer systems - a review, Wat. Sci. Tech., 25(6),17-31.
O’Connor D.J. and Dobbins W.E. (1958). Mechanisms of reaeration in natural streams. Transactions, ASCE, 123, 641-684.
Olsson G. and Newell B. (2000). Wastewater Treatment Systems, Modelling, Diagnosis and Control, IWA, London.
Orhon D. and Artan N. (1994). Modelling of Activated Sludge System. Technomic, PV.
Ouyang C.F., Chou Y.J., Pai T.Y., Chang H.Y. and Liu W.T. (2000) Optimization of enhanced biological wastewater treatment processes using a step-feed approach, Advances in Water and Wastewater Treatment Technology in 2000 -- Molecular technology, nutrient removal, sludge reduction, and environmental health. Elsevier Science.
Owens M., Edwards R.W. and Gibbs J.W. (1964). Some reaeration studies in streams, Int J. Air Wat. Poll., 8, 469-486.
Pai T.Y., Ouyang C.F., Su J.L. and Leu H.K. (2000a). Modelling the steady-state effluent characteristics of the TNCU process with ASM2d under varied SRT conditions, Journal of the Chinese Institute of Environmental Engineering, 10(1), 35-42.
Pai T.Y., Ouyang C.F., Liao Y.C. and Leu H.K. (2000b). Oxygen transfer in gravity flow sewer, Wat. Sci. Tech., 42(3-4),417-422.
Pai T.Y., Ouyang C.F., Chen C.Y., Leu H.K. and Liao Y.C. (2000c). The integral diffusion- convection- reaction (IDCR) model in the sewer, 1st World Congress of the IWA, Paris.
Pai T.Y., Ouyang C.F., Chen C.Y., Leu H.K. and Liao, Y.C. (2000d) The simulation of transformation of nitrogen compounds in the sewer, 1st World Congress of the IWA, Paris.
Pai T.Y., Ouyang C.F., Su J.L. and Leu H.K. (2001a). Modeling the stable effluent qualities of the A2O process with Activated Sludge Model 2d under different return supernatant, Journal of the Chinese Institute of Engineers, 24(1), 1-10.
Pai T.Y., Ouyang C.F., Su J.L. and Leu H.K. (2001b). Modelling the steady-state effluent characteristics of the TNCU process under different return mixed liquid, Applied Mathematical Modelling.(accepted)
Parkhurst J.D. and Pomeroy R.D. (1972). Oxygen absorption in streams, J. San. Eng., Dive., ASCE, 98(SA1), 101-124.
Pramanik J., Trelstad P.L., Schuler A.J., Jenkins D. and Keasling J.D. (1999). Development and validation of a flux-based stoichiometric model for enhanced biological phosphorus metabolism, Wat. Res., 33(2), 462-476.
Picioreanu C., van Loosdrecht M.C.M and Heijnen J.J. (1998a). A new combined differential-discrete cellular automaton approach for biofilm modeling: application for growth in gel beads, Biotechnol. Bioeng. 57(6), 718-731.
Picioreanu C., van Loosdrecht M.C.M and Heijnen J.J. (1998b). Mathematical modeling of biofilm structure with hybrid differential-discrete cellular automaton approach, Biotechnol. Bioeng. 58(1), 101-116.
Portielje R. and Lijklema L. (1993). Sorption of phosphate by sediments as a result of enhanced external loading, Hydrobiologia, 253, 249-261.
Randall C.W., Barnard J.L. and Stensel H.D. (1992). Design and Retrofit of Wastewater Treatment Plants for Biological Nutrient Removal. Chapters 1-4, Technomic Publishing Company, Inc.
Reichert P. and Wanner O. (1997). Movement of solids in biofilms: significance of liquid phase transport, Wat. Sci. Tech., 36(1), 321-328.
Reichert P.(1998). Aquasim 2.0 - user manual. Swiss Federal Institute for Environmental Science and Technology (EAWAG), Switzerland.
Seidl M., Servais P., Martaud M., Gandouin C. and Mouchel J.M. (1998). Organic carbon biodegradability and heterotrophic bacteria along a combined sewer catchment during rain events, Wat. Sci. Tech., 37(1), 25-33.
Smolders G.J.F., van Loosdrecht M.C.M. and Heijnen J.J. (1995). A metabolic model for the biological phosphorus removal process, Wat. Sci. Tech., 31, 79-93.
Stratful I., Brett S., Scrimshaw M.B. and Lester J.N. (1999). Biological phosphorus removal, its role in phosphorus recycling, Environ. Technol., 20(7), 681-695.
Tanaka N. and Hvitved-Jacobsen T. (1998). Transformation of wastewater organic matter in sewers under changing aerobic/anaerobic conditions, Wat. Sci. Tech., 37(1), 105-113.
Thackston E.L. and Krenkel P.A. (1969). Reaeration prediction in natural streams, J. San. Eng. Div., ASCE, 95(SA1), 65-94.
Tsivoglou E.C. and Wallace J.R. (1972). Characterization of stream reaeration capacity, Report No EPA- R2-72-012., U.S. Enviromental Protection Agency, Washington DC.
Tyagi R.D., Du Y.G. and Bhamidimarri R. (1996). Dynamic behavior of the activated sludge process under shock loading: application of the floc model, Wat. Res., 30(7), 1605-1616.
Van Veldhuizen H.M., van Loosdrecht M.C.M. and Heijnen J.J. (1999). Modelling biological phosphorus and nitrogen removal in a full scale activated sludge process, Wat. Res., 33(16), 3459-3468.
Vollertsen J. and Hvitved-Jacobsen T.(1998). Aerobic microbial transformations of resuspended sediments in combined sewers- a conceptual model, Wat. Sci. Tech., 37(1), 69-76.
Wanner O. and Gujer W. (1984). Comprtition in biofilm, Wat. Sci. Tech., 17, 27-44.
Wanner O. and Gujer W. (1986). A multispecies biofilm model, Biotechnol. Bioeng. 28(2), 314-328.
Wanner O. and Reichert P. (1996). Mathematical modeling of mixed-culture biofilms, Biotechnol. Bioeng. 49(2), 172-184.
WEF (1999) Biological and Chemical Systems for Nutrient Removal, Water Environment Federation, VA.
Wentzel M.C., Lotter L.H., Loewenthal R.E. and Marais G.v.R. (1986). Metabolic behavior of Acenetobacter spp. in enhanced biological phosphorus removal - a biochemical model, Water SA. 12(4), 209-224.
Wentzel M.C., Lotter L.H., Loewenthal R.E., Ekama G.A., Lewenthal R.E. and Marais G.v.R. (1991). Evaluation of biochemical model for biological excess phosphorus removal, Wat. Sci. Tech., 23, 567-576.
Whitmore A. and Corsi R.L.(1994). Measurement of gas-liquid mass transfer coefficients for volatile organic compounds in sewers, Environmental Progress, 13, 114-123.
Wimpenny J.W.T. and Colasanti R. (1997). A unifying hypothesis for the structure of microbial biofilms based on cellular automaton models, FEMS Microbiology Ecology, 22, 1-16.
Zhang Q. and Stanley S.J. (1999). Real-time water treatment process control with artificial neural networks, J. Environ. Eng., ASCE, 125(2), 153-160.
Zhang T.C. and Bishop P.L. (1994). Experimental determination of the dissolved oxygen boundary layer and mass transfer resistance near the fluid-biofilm interface, Wat. Sci. Tech., 30(11), 47-58.
指導教授 歐陽嶠暉(Chaio-Fuei Ouyang) 審核日期 2001-6-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明