博碩士論文 86346006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:3.235.74.184
姓名 卓伯全(Bo-Chao CHo)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 連續流循序批分式活性污泥系統 好氧相即時曝氣控制策略之發展 — 低溶氧生物脫氮除磷程序控制技術之研究
(Development of a Real-time Aeration Control Strategy for Low DO LevelBiological Nutrient Removal (BNR) Process Control of a Continuous-Flow Sequencing Batch Reactor )
相關論文
★ 彩色濾光片生產線清潔生產之改善研究★ 以離子交換法處理半導體廠氫氧化四甲基銨廢液之研究
★ 建立量測水位、MLSS濃度與SS濃度及污泥沉澱速度光學量測裝置之研究★ 奈米晶相Fe(OH)3催化臭氧反應程序處理油煙VOCs之發展
★ 無塵室揮發性有機污染物防制對策的探討★ 應用數位影像技術於廢水真色色度監測之研究
★ 污水處理廠操作最佳化之研究★ 河川流域水土資源承載力與永續力評量模式之發展
★ 單槽連續進流回分式活性污泥系統微生物菌相之研究★ 單槽連續進流回分式活性污泥系統溶氧控制之研究
★ 工業區廢水管理資訊系統之發展與建立-以觀音工業區為例★ 河川流域水管理系統動力學模式之發展與建立
★ 連續流回分式活性污泥系統好氧相曝氣控制策略之研究-線上即時量測溶氧轉換率與需氧量方法之建立★ 智慧型環境詞彙庫之發展與建置
★ 環境法規資料庫之發展與建置★ 永續發展虛擬圖書館之發展與建置
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 為提昇連續流循序批分式活性污泥系統( Continuous-Flow SequencingBatch Reactor, CFSBR)的整體處理效率及效益,本研究乃藉由低溶氧生物攝磷及硝化反應動力參數之分析,以評估其程序控制之可行性並界定成效
限制因子,並結合線上即時量測溶氧轉換比率(at)及系統需氧速率(ODt+Dt)用以表現微生物用氧行為與特性的探討,研擬即時曝氣控制的方法,以控
制CFSBR 系統於低溶氧環境中同時進行生物攝磷及氨硝化程序。研究結果顯示,CFSBR 系統之兼氣性微生物可被馴化及控制在低溶氧環境中進行生物攝磷及氨氮硝化程序。當微生物被馴化並控制在低溶氧環境進行生
物攝磷及氨氮硝化程序過程中,突增曝氣量或改變系統溶氧濃度,將會干擾生物攝磷機制及降低氨氮硝化的速率,導致脫氮除磷成效的惡化。厭氧相所需維持的氧化還原狀態為低溶氧生物攝磷及氨氮硝化程序之成效限
制因子。有效控制硝化產物以亞硝酸鹽及硝酸鹽的型式共同存在,且降低硝酸鹽與亞硝酸鹽的濃度比例,不僅可縮短缺氧脫硝反應的時間及促進脫硝反應的完全,同時可促使後續操作循環之厭氧相處於ORP < -250 mV 的氧化還原狀態,進而降低硝酸鹽對生物厭氧釋磷作用的抑制效應,使整體脫氮除磷效率大幅提昇。根據即時曝氣控制方法所量測之溶氧轉換比率與系統需氧速率等資訊,可瞭解CFSBR 系統微生物進行生物攝磷與硝化反應過程中的用氧行為,包括:系統溶氧進入微生物細胞以進行恢復代謝基質活性的時機、微生物活性恢復的機、及硝化反應型態等。結合上述的微生物用氧行為量測的方法修正即時曝氣控制方法,將可提高程序控制的穩定性與提昇整體操作效率及效益。
摘要(英) The purpose of this study is to develop a real-time aeration control method to
control the aerobic bio-phosphorus uptake and ammonia nitrogen nitrification
processes operated under low DO level conditions, to increase the
comprehensive performance of Continuous-Flow Sequencing Batch Reactor
(CFSBR). The study results showed the facultative organisms in CFSBR
could be acclimated and controlled under low DO levels and low ORP states to
perform the simultaneous bio-phosphorus uptake and ammonia nitrogen
nitrification processes, and high comprehensive performance of CFSBR were
obtained. The performance limiting factor of low DO level bio-phosphorus
uptake and nitrification processes is the ORP state in anaerobic phases.
Control the nitrified productions were coexistence of NO2
--N and NO3
--N, as
well as low NO3
--N/NO3
--N ratios were presented, could increase the efficiency
of the anoxic denitrification processes and eliminate the inhibition effects of
bio-phosphorus release in the anaerobic phases, thus increase the performance
of low level bio-phosphorus uptake and nitrification processes. The on-line
measured information of the oxygen transfer ratios and the oxygen demand rates could characterize the microbial oxygen utilization behaviors in the low DO level bio-phosphorus uptake and ammonia nitrogen nitrification processes.Integrate the on-line measured information of the oxygen transfer ratios and the oxygen demand rates into the real-time aeration control method could increase
the stability of process controls and the effectiveness of operations.
關鍵字(中) ★ 溶氧生物攝磷
★ 需氧速率
★ 溶氧轉換比率
關鍵字(英) ★ oxygen utilization behaviors
★ CFSBR
論文目次 第一章前言1
1.1 研究緣起1
1.2 研究目的2
1.3 研究內容及流程3
第二章文獻回顧6
2.1 CFSBR 系統脫氮除磷程序之沿革6
2.1.1 厭氧相生化反應機制及其影響因子8
2.1.2 好氧相生化反應機制及其影響因子16
2.1.3 缺氧相生化反應機制及其影響因子22
2.1.4 再曝氣相24
2.1.5 沉澱相26
2.2 CFSBR 系統自動監測控制系統之發展26
2.2.1 廢水自動監測控制設備之研究及應用27
2.2.1.1 DO 原理及其於廢水處理上的應用27
2.2.1.2 pH 原理及其於廢水處理上的應用29
2.2.1.3 ORP 原理及其於廢水處理上的應用30
2.2.2 CFSBR 系統自動監測控制系統之研究40
第三章問題瞭解與解決方案44
3.1 CFSBR 系統程序控制上的問題瞭解44
3.1.1 除磷成效不穩定的問題與原因44
3.1.2 ORP/pH 即時監測控制點受干擾的問題與原因53
3.1.3 污泥沉降性不良的問題與原因55
3.2 解決方案之研擬與執行成效評估59
3.2.1 溶氧即時控制策略59
3.2.2 即時曝氣控制策略65
第四章低溶氧生物攝磷與氨氮硝化之理論與假說69
4.1 CFSBR 系統之界定69
4.2 含碳有機物之好氧代謝71
4.3 生物除磷機制73
4.3.1 生物除磷菌厭氧代謝模式78
4.3.2 生物除磷菌好氧代謝模式84
4.3.3 生物除磷反應動力參數之比較87
4.4 生物除氮機制89
第五章研究設備及方法92
5.1 研究設備及材料92
5.1.1 連續流循序批分式活性污泥系統92
5.1.2 人工廢水組成與活性污泥98
5.1.3 實驗分析設備與水質分析方法102
5.2 程序控制與反應動力參數分析方法104
5.2.1 操作相即時控制方法104
5.2.2 比基質去除率計算方法104
5.2.3 決定qS,max 及KS 方法106
第六章結果與討論107
6.1 低溶氧生物攝磷及氨氮硝化程序之可行性評估107
6.2 低溶氧生物攝磷及氨氮硝化程序成效限制因子之界定115
6.3 低溶氧生物攝磷及氨氮硝化程序微生物用氧行為之界定117
6.3.1 氧進入微生物細胞時機之界定117
6.3.2 微生物恢復基質代謝活性時機之界定120
6.3.3 系統需氧速率與硝化反應型態之關係123
6.4 修正即時曝氣控制方法及其執行成效評估125
6.4.1 修正即時曝氣控制方法125
6.4.2 即時曝氣控制執行成效評估130
第七章結論與建議136
5.1 結論136
5.2 建議137
參考文獻138
附錄:水質分析方法150
參考文獻 [1] 阮春騰、歐陽嶠暉,「改良式單槽連續進流間歇曝氣系統處理特性之
初步研究」,第十七屆廢水處理技術研討會論文集,中壢(1992)。
[2] 歐陽嶠暉、何明宗、廖述良,「改良式連續流回分活性污泥法最適處
理之研究」,第十八屆廢水處理技術研討會論文集,台中(1992)。
[3] 廖述良,「廢水處理系統最佳化之研究-改良式連續回分式活性污泥
系統自動化與最佳化(III)」,行政院國科會研究計畫報告,中央大學,
中壢(1998)。NSC-87-2211-E-008-006
[4] 廖述良,「簡易廢水處理系統自動監控系統之研究與發展」,行政院
國科會研究計畫報告,中央大學,中壢(2001)。
[5] 謝汶興、廖述良、呂學智、余瑞芳,「單槽連續流回分式活性污泥系
統操作特性之初探」,第十九屆廢水處理技術研討會論文集,台南
(1994)。
[6] 呂學智、廖述良、余瑞芳、陳萬原,「單槽連續流回分式活性污泥系
統自動化監控之初步研究— 以ORP、pH、DO 為監控參數之探討」,
第二十屆廢水處理技術研討會論文集, 台北( 1995 )。
NSC-84-2211-E-008-002
[7] 陳萬原、廖述良、余瑞芳,「單槽連續流SBR 廢水處理系統即時自
動控制之研究」,第二十一屆廢水處理技術研討會論文集,台中
(1996)。NSC-84-2211-E-008-006
[8] 余瑞芳、陳萬原、廖述良、張鎮南,「類神經網路於連續流SBR 廢
水處理系統即時控制之應用」,第二十一屆廢水處理技術研討會論文
集,台中(1996)。NSC-84-2211-E-008-006
[9] Yu, R. F., S. L. Liaw, C. N. Chang, H. J. Lu and W. Y. Cheng, “The
139
Monitoring and Control Using On-line ORP on Continuos-flow Sludge
Batch Reactor,” Water Science and Technology, Vol. 35, No. 1, pp. 57-66
(1997). NSC-84-2211-E-008-002
[10] Yu, R. F., S. L. Liaw, C. N. Chang and W. Y. Cheng, ”Enhancing the
Performance of Nitrogen Removal in Continuous-flow SBR system
Using Real-time Control,” Journal of the Chinese Institute of
Environmental Engineering Vol. 7, No. 4, pp. 319-328 (1997).
NSC-86-2211-E-008-005
[11] Yu, R. F, S. L. Liaw, C. N. Chang, and W. Y. Cheng, “Applying
Real-time Control to Enhance the Performance of Nitrogen Removal in
Continuous-flow SBR System,” Water Science and Technology, Vol. 38,
No. 3, pp. 271-280 (1998). NSC-86-2211-E-008-005
[12] 楊素禎、廖述良、余瑞芳、卓伯全、黃香賓珽,「單槽連續流回分式
活性污泥系統處理動態進流污水自動控制之研究」,第二十四屆廢水
處理技術研討會論文集,中壢(1999)。NSC-86-2211-E-008-005
[13] 卓伯全、廖述良、余瑞芳、楊素禎,「應用類神經網路推估硝化及脫
硝反應終點之可行性研究」,第二屆環境系統分析研討會,台南
(1999)。NSC-86-2211-E-008-005
[14] 卓伯全、廖述良、邱柏仁、余瑞芳,「應用類神經網路輔助建立動態
連續進流循序批分式活性污泥系統之即時控制策略」,第二十五屆廢
水處理技術研討會論文集,雲林(2000)。NSC-89-2211-E-008-070
[15] Yu, R. F, S. L. Liaw, C. N. Chang, and W. Y. Chen, “Performance
Enhancement of a SBR Applying Real-time Control,” J. of
Environmental Engineering, ASCE, Vol. 126, No. 10, pp. 943-948
(2000). NSC-86-2211-E-008-005
[16] Cho, B. C., C. N. Chang, S. L. Liaw, P. T. Huang, “The Feasible
140
Sequential Control Strategy of Treating High Strength Organic Nitrogen
Wastewater with Sequencing Batch Biofilm Reactor,” Water Science and
Technology , Vol 43, No. 3, pp. 115-122. (2000).
[17] Yu, R. F., S. L. Liaw, B. C. Cho, and S. J. Yang, “Dynamic Control of a
Continuous-inflow SBR with Time-varying Influent Loading,” Water
Science and Technology, Vol. 43, No. 3, pp.107-114. (2001).
NSC-86-2211-E-008-005
[18] Cho B. C, S. L. Liaw, C. N. Chang, R. F. Yu, S. J. Yang and B. R. Chiou
“Development of a real-time control system with artificial neural
network for automatic control of a continuous-flow sequencing batch
reactor.” Water Science and Technology, Vol. 44, No. 1, pp.95-104.
(2001). NSC 88-2211-E008-023.
[19] 邱柏仁、廖述良、卓伯全、許添財,「單槽連續流回分式活性污泥系
統溶氧控制之研究」,第二十六屆廢水處理技術研討會論文集,高雄
(2001)。NSC 89-2211-E-008-070
[20] 許添財、廖述良、卓伯全、林孟君、王祥洲,「連續流循序批分式活
性污泥好氧相曝氣控制策略之研究— 線上即時量測溶氧轉換率與需
氧量方法之建立」,第二十七屆廢水處理技術研討會論文集,台北
(2002)。NSC 89-2211-E-008-070
[21] 卓伯全、廖述良、許添財、林孟君、王祥洲,「連續流循序批分式活
性污泥系統低溶氧生物攝磷現象之探討」,第二十七屆廢水處理技術
研討會論文集,台北(2002)。NSC 89-2211-E-008-070
[22] 歐陽嶠暉,下水道工程學(2001),增改訂三版,長松文化公司。
[23] Water Environment Federation, ISBN: 1-57278-123-8 (1998).
Biological and Chemical Systems for Nutrient Removal.
[24] U.S. Environmental Protection Agency, ISBN: 1-56676-135-2.
141
Nitrogen Control. TECHNOMIC Publishing Company, Inc.
[25] Metcalf and Eddy (1991). Wastewater Engineering-Treatment, Disposal,
Reuse. 3rd edition, McGraw-Hill International Editions.
[26] Buchuan L. (1983). Possible Biological Mechanism of Phosphorus
Removal. Wat. Sci. Tech., 15, 3/4, 87.
[27] Mino T. (1987). Effect on Phosphorus Accumulation on Acetate
Metabolism in the Biological Phosphorus Removal Process. In
Advances in Water Pollution Control: Biological Phosphate Removal
from Wastewaters. R. Ramadori (Ed.), Pergamon Press, Oxford, Eng.
[28] Comeau Y., Hall K. J., Hancock R. E. W. and Oldham W. K. (1986).
Biochemical Model of Enhanced Biological Phosphorus Removal. Wat.
Res. (G.B.), 20, 12, 1151-1521.
[29] Comeau Y. (1987). In Advances in Water Pollution Control: Biological
Phosphate Removal from Wastewaters. R. Ramadori (Ed.), Pergamon
Press, Oxford, Eng.
[30] Schon G., Geywitz S and Mertens F. (1993). Influence of Dissolved
Oxygen and Oxidation Reduction Potential on Phosphate Release and
Uptake by Activated Sludge from Sewage Plants with Enhance
Biological Phosphorus Removal. Wat. Res., 27, 3, 349-354.
[31] Maiais D. and Jenkins D. (1992). The Effect of MCRT and
Temperature on Enhanced Biological Phosphorus Removal. Wat. Sci.
Tech., 26, 5-6, 955-965.
[32] Koch F. A. and Oldham W. K. (1985). Oxidation-Reduction
Potential— A Tool for Monitoring Control and Optimization of
Biological Nutrient Removal System. Wat. Sci. Tech., 17, Peris,
259-281.
142
[33] Tracy K. D. and Flammino A. (1985). Kinetics of Biological
Phosphorus Removal. 58th Annu. Conf. Water Pollut. Control Fed.,
Kansas City, Mo.
[34] Fukase T. (1982). Studies on the Mechanism of Biological Phosphorus
Removal. Jpn. J. Water Pollut. Res., 5, 309.
[35] 林瑩峰、荊樹人、許菁珊、凌瓔玫、蔡永能(1997),階梯入料對間歇
曝氣回分是活性污泥系統脫氮除磷之影響,第二十二屆廢水處理技
術研討會論文集,第432-439 頁。
[36] Kuba T., Achtmeisterm A., van Loosderecht M. C. M. and Heijene J. J.
(1994). Effect of Nitrate on Phosphorus Release in Biological
Phosphorus Removal System. Wat. Sci. Tech., 30, 6, 263-269.
[37] 曾四恭、林百文(1997),有機碳源量與種類對去磷機制之研究,第二
十二屆廢水處理技術研討會論文集,第423-431 頁。
[38] 陳萬原(1996),單槽連續進流回分是活性污泥系統自動監控策略之研
究— 以ORP、pH 為監控參數,國立中央大學環境工程研究所碩士論
文。
[39] 曾四恭、林百文(1997),生物去磷系統中不同硝酸鹽濃度廢水對釋磷
特性探討,第二十屆廢水處理技術研討會論文集,第417-423 頁。
[40] Sasaki K., Yamamoto Y., Hatsumeta K. T. S. and Tatewaki M. (1993).
Simultaneous Removal of Nitrogen and Phosphorus in Intermittently
Aerated 2-Tank Activated Sludge Process Using DO and ORP-Bending
Point Control. Wat. Sci. Tech., 28, 11-12, 513-521.
[41] Lie E. and Welander T. (1994). Influence of Dissovled Oxygen and
Oxidation-Reduction Potential on the Denitrification Rate of Activated
Sludge. Wat. Sci. Tech., 36, 6, 71-74.
[42] Smolders G. J. F., Loosdrecht M. C. M. and Heijnen J. J. (1994). pH:
143
Key factor in the Biological Phosphorus Removal Process. Wat. Sci.
Tech., 29, 7, 71-74.
[43] Al-Ghusian I. A., Huang J. Hao O. J. and Lim B. S. (1994). Using pH
as a Real-time Control Parameter for Wastewater Treatment and Sludge
Digestion Process. Wat. Sci. Tech., 30, 4, 159-168.
[44] Groeneweg J., Sellner B. and Tappe W. (1994). Ammonia Oxidation in
Nitrosomonas at NH3 Concentration near Km: Effects of pH and
Temperature. Wat. Res., 29, 12, 2561-2566.
[45] 黃政賢(1992),水處理工程,曉園出版社。
[46] Hood J. W. (1948). Measurement and Control of Sewage Treatment
Process Efficiency by Oxidation-Reduction Potential. Sewage Works
Journal, 22, 4, 640-653.
[47] Heduit A. and Thevenot D. R. (1989). Relation Between Redox
Potential and Oxygen Levels in Activated Sludge Reactors. Wat. Sci.
Tech., Brighton, 21, 947-956.
[48] Charpentier J. and Vachon A. (1991). ORP as a Control Parameter in a
Single Sludge Biological Nitrogen and Phosphorus Removal Activated
Sludge System. Water SA, 17, 2, 123-132.
[49] Charpentier J., Godart H., Martin G. and Mogno Y. (1989).
Oxidation-Reduction Potential as a Way to Optimize Aeration and C, N
and P Removal: Experimental Basis and Various Full-Scale Examples.
Wat. Sci. Tech., Brighton, 21, 1209-1223.
[50] Eckenfelder W. W. and Hood J. W. (1951). The Application of
Potential to Biological Waste Treatment Process Control. Proceeding
of 6th Purdue Industrial Waste Conference, Feb. 21-23, Purdue
University, West Lafayette, Indiana, 221-238.
144
[51] Watanabe S., Baba K. and Nogita S. (1985). Basic Studies on an
ORP/External Carbon Source Control System for the Biological
Denitrification Process. Instrumentation and Control Of Water and
Wastewater Treatment and Transport System, 4th IAWPRC Workshop,
27 April- 4 May, 641.
[52] Peddie C. C., Mavinic D. S. and Jenkins C. J. (1990). Use of ORP for
Monitoring and Control of Aerobic Sludge Digestion. J. Envi. Eng.,
116, 3, 461-471.
[53] Burbank N. P. Jr. (1981). ORP-A Tool for Process Controll. Process
Isl. An. Conf. On Avt. Sludge Conf. Arthn Tech. Wisc., 65-79.
[54] Jenkins C. J. and Mavinic D. S. (1989). Anoxic-Aerobic Digestion of
Wastewater Activated Sludge: part II— Supernatant Characterics, ORP
Monitoring Results and Overall Rating System. Environmental
Technology Letters., 10,371-384.
[55] Charpentier J., Florentz M. and David G. (1987). Oxidation-Reduction
Potential (ORP) Regulation: A Way to Opitimize Pollution Removal and
Energy Savings in the Low Load Activated Sludge Process. Wat. Sci.
Tech., 19, Rio, 645-655.
[56] Sedlak, R. (1991). Phosphorus and Nitrogen Removal from Municipal
Wastewater, Lewis Publishers.
[57] Menardiere P. H., Roland D. D. and William H. P. (1991).
Transformation of Selenium as Affected by Sediment
Oxidation-Reduction Potential and pH. Env. Sci. Tech., 24, 1, 91-96.
[58] Wareham, D. G., Mavinic D. S. and Kenneth J. H. (1993). Sludge
Digestion Using ORP-Regulated Aerobic-Anoxic Cycles. Wat. Res.,
28, 2, 373-384.
145
[59] Rothberg M. R., Phillip A. S. and William F. B. (1993). Single Basin
Process Removes Nitrogen. Wat. Sci. Tech., April, 58-63.
[60] Bortone G., Gemelli S., Rambaldi A. and Tilche A. (1992).
Nitrification, Denitrification and Biological Phosphate Removal in
Sequencing Batch Reactors Treating Piggery Wastewater. Wat. Sci.
Tech., 26, 5-6, 977-985.
[61] 曾四恭、王興舜(1993),單槽回分式活性污泥程序進行養豬廢水中
N、P 去除之研究,中國水利工程學會第十八屆廢水處理技術研討會
論文集,441-453。
[62] 張鎮南、余瑞芳、陳婉如(1993),好氧生物處理系統中ORP 控制技術可行
性研究,第十入屆廢水處理技術研討會論文集,317-330。
[63] 張鎮南、陳婉如(1994),以ORP 作為連序式活性污泥法(SBR)去除含碳、
氮、磷化合物自動控制之初探,第十九屆廢水處理技術研討會論文集,
217-226。
[64] 張鎮南、許峰賓(1995),不同控制程序下SBR 脫氮程序N2O 產生特性之
初步探討,第二十屆廢水處理技術研討會論文集,2-31— 2-37。
[65] 卓伯全、張鎮南(1996),以連續批分式接觸材程序分解含高氮有機物
之研究,第二十一屆廢水處理技術研討會論文集,176-183。
[66] Doong R. A. and Wu S. C. (1992). The Effect of Oxidation-Reduction
Potential on the Biotransformation of Chlorinated Hydrocarbons. Wat.
Sci. Tech., 26, 1-2, 159-169.
[67] Couillard D., Chartier M. and Mercier G. (1991). Bacterial Leaching of
Heavy Metals from Aerobic Sludge. Bioresource Technology, 36,
293-302.
[68] Chang C. N., Lin J. G., Chao A. C., Cho B. C. and Yu R. F. (1997). The
Pretreatment of Acrylonitrile and Styrene with the Ozonation Process.
146
Wat. Sci. Tech., 36, 2-3, 263-270.
[69] 卓伯全、張鎮南、許文龍、黃璸珽、潘子欽(1997),以預臭氧程序促
進含高有機氮斐水氧化及提昇生物可分解性之研究,第二十二屆廢
水處理技術研討會論文集,595-602。
[70] Rittmann B. E. and McCarty P. L. (2001). Environmental
Biotechnology: Principles and Applications. McGrew-Hill Companies,
Inc.
[71] Pramanik J., Trelstad P. L., Schuler A. J. Jenkins D. and Keasling J. D.
(1999). Development and validation of a flux-based stoichiometric
model for enhanced biological phosphorus removal metabolism. Wat.
Res., 33, 2, 461-476.
[72] Brock T. D. and Michael T. M. (1970). Biology of microorganism.
[73] Cech J. S. and Hartman P. (1990). Glucose induced breakdown of
enhanced biological phosphorus removal. Environ. Technol., 11, 651.
[74] Cech J. S. and Hartman P. (1993). Competition between polyphosphate
and polysaccharide accumulating bacteria biological phosphorus systems.
Wat. Res., 27, 1219.
[75] Satoh H., Mino T., Matsuo T. (1994). Deterioration of enhanced
biological phosphorus removal by the domination of microorganisms
without polyphosphate accumulation. Wat. Sci. Tech., 30, 203.
[76] Liu W. T., Mino T., Nakamura K., Matsuo T. (1994). Role of glycogen
in acetate uptake, and polyhydroxyalkanoate synthesis in
anaerobic-aerobic activated sludge with a minimized polyphosphate
content. J. Ferm. Bioeng., 77, 535-40.
[77] Matsuo T. (1994). Effect of the anaerobic solids retention time on
enhanced biological phosphorus removal. Wat. Sci. Tech., 30, 193.
147
[78] Mino T, Van Loosdrecht M. C. M., Hejjnen J. J. (1998). Microbiology
and biochemistry of the enhanced biological phosphate removal process.
Wat. Res., 32, 3193.
[79] Dawes E. A. (1986). Microbial energetics. London: Blackie & Son
Limited.
[80] Wang N., Peng J. and Hill G. (2002). Biochemical model of glucose
induced enhanced biological phosphorus removal under anaerobic
condition. Wat. Res., 36, 1, 49-58.
[81] Comeau Y., Rabinowitz B., Hall K. J. and Oldham W. K. (1987).
Phosphate release and uptake in enhanced biological phosphorus
removal from wastewater. J. Wat. Pollut. Control Fed., 59, 707-715.
[82] Satoh H., Mino T. and Matsuo T. (1992). Uptake of organic substrates
and accumulation of polyhydroxyalkanoates linked with glycolysis of
interacellar carbohydrates under anaerobic conditions in the biological
excess phosphate removal processes. Wat. Sci. Tech., 26, 5-6, 933-942.
[83] Wentzel M. C., Lotter R. H., Loewenthal R. E. and Marais G. v. R.
(1991). Evaluation of biochemical models for biological phosphorus
removal. Wat. Sci. Tech., 23, 567.
[84] Gottschalk G. (1986). Bacterial metabolism. Berlin: Springer-Verlag
New York Inc.
[85] Wang N., Hill G. and Peng J. (2002). The role of glucose in developing
enhanced biological phosphorus removal. Environ. Eng. Policy, 3,
45-54.
[86] Dawes E. A. and Senior P. J. (1973). The role and regulation of energy
reserve polymers in microorganisms. Adv. Micro. Physiol., 10, 136.
[87] Gaudy F. A. (1978). Microbiology of environmental scientists and
148
engineers. McGraw-Hill Book Company: New York.
[88] Bailey J. E. and Ollis D. F. (1986). Biochemical engineering
fundamentals. McGraw-Hill Book Company: New York.
[89] Susanne T. (1997). Propionate oxidation in E. Coli. Arch. Microbiol.,
168, 428-436.
[90] Smolders G. J. F., Meiji v. d. j, Loodrecht v. M. C. M. and Heijnen J. J.
(1994). Stoichiometric model of the aerobic metabolism of the
biological phosphorus removal process. Biotechnol. Bioeng., 44,
837-848.
[91] Wang N., Hill G. and Peng J. (2002). Mathematical model for the
microbial metabolism of glucose induced enhanced biological
phosphorus removal in an anaerobic/aerobic sequential batch reactor.
Environ. Eng. Policy, 3, 87-99.
[92] Smolders G. J. F., Meiji v. d. j., Loodrecht v. M. C. M. and Heijnen J. J.
(1995). A structured metabolic model for the anaerobic and aerobic
stoichiometry and kinetics of the biological phosphorus removal process.
Biotechnol. Bioeng., 47, 277-287.
[93] Painter H. A. (1970). A review of literature on inorganic nitrogen
metabolism in microorganisms. Wat. Res., 4, 6, 393.
[94] McCraty P. L. (1964). Thermodynamics of biological synthesis and
growth. Proceedings of the 11th Int. Conf. on Water Poll. Res., Tokyo,
Japan, 169-199.
[95] Turk O. and Mavinic D. S. (1986). Preliminary assessment of a
shortart in nitrogen removal from wastewater. Can. J. Civ. Engrs., 13,
600-605.
[96] Balmelle B., Nguyen K. M., Capdeville B., Cornier J. C. and Deguin A.
(1992). Study of factors controlling nitrite build-up in biological
processes for water nitrification. Wat. Sci. Tech., 26, 1017-1025.
[97] Rahmani H., Rols J. L., Capdeville B., Cornier J. C. and Deguin A.
(1995). Nitrite removal by a fixed culture in a submerged granular
biofilter. Wat. Res., 29, 7, 1745-1753.
[98] Lee D. S., Jeon C. O. and Park J. M. (2001). Biological nitrogen
removal with enhanced phosphate uptake in a sequencing batch reactor
using single sludge system. Wat. Res., 35, 16, 3968-3976.
[99] Kuba T., van Loosdrecht M. C. M. and Heijnen J. J. (1996). Effect of
cyclic oxygen exposure on the activity of denitrifying phosphorus
removing bacteria. Wat. Sci. Tech., 34, 1-2, 33-40.
[100] Wachtmeister A., Kuba T. and van Loosdrecht M.C.M. (1997). A
sludge characterization assay for aerobic and denitrifying phosphorus
removing sludge. Wat. Res., 3, 3, 471-478.
[101] Chuang S.H., Ouyang C.F., Yuang H.C. and You S.J. (1998).
Evaluation of phosphorus removal in anaerobic-anoxic-aerobic
system-via polyhydroxyalkonoates measurements. Wat. Sci. Tech., 38,
1, 107-114.
[102] Gupta S.K. and Sharma R. (1996). Biological oxidation of high
strength nitrogenous wastewater. Wat. Res., 30, 3, 593-600.
[103] Drtil M., Nemeth P. and Bodik I. (1993). Kinetic constants of
nitrification. Wat. Res., 27, 35-39.
指導教授 廖述良(Shu-Liang Liaw) 審核日期 2003-10-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明