博碩士論文 86443005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:46 、訪客IP:3.22.242.141
姓名 張應華(Ying-Hua Chang)  查詢紙本館藏   畢業系所 資訊管理學系
論文名稱 應用遺傳演算法新的效率編碼模式解決資源/生產分配問題
(New Efficient Encoding Method of Genetic Algorithms for Resource/Production Allocation Problems)
相關論文
★ 彩色影像視覺密碼之製作★ 應用遺傳演算法於向量量化之新編碼簿設計法
★ 偵測灰階影像中的人造物體★ 基於非擴展式視覺密碼之浮水印技術
★ 無須訓練的向量量化編碼簿設計法★ 不需擴展的彩色視覺密碼
★ 擴充固定比例(CPPI)與時間不變性投資組合保險策略(TIPP)於投資組合之應用★ 演化式賽局於投資策略之研究
★ 基於灰階視覺密碼之浮水印技術★ 彩色影像之擴充型視覺密碼
★ 利用遺傳演算法對股價反轉點的預測★ 運用漸進模糊類神經網路於預測每股盈餘 成長率之研究
★ 數位影像與文件保護機制之設計-以視覺式秘密分享和資訊隱藏為基礎★ 基於目標規劃與統計學的視覺密碼及其在著作權保護的應用之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究提出遺傳演算法(genetic algorithms)新的效率編碼模式來解決概化性資源分配問題(generalized resource allocation problems)。首先,我們提出一遺傳演算法的效率組合編碼法(combination encoding method),以解決簡單資源分配問題,其中資源分配問題主要是有關於如何分派有限資源(resources)給各個活動(activities),以使這些活動在得到資源後能夠獲取最大的報酬,而此效率組合編碼法由於可將一個限制式編入染色體中,所以可以縮小問題的解答搜尋空間,以提升遺傳演算法的效能。且當活動的個數漸漸增加時,其只需要增加一些演化代數即可得到足夠好的解答,而最普遍、通用的懲罰式編碼法(penalty encoding method),在當活動的個數漸漸增加時,則需要比較多的演化代數,以求得相同的解答。同時,為了使遺傳演算法能夠正常的進行演化,本研究亦提出與效率組合編碼法相對應的交配(crossover)運算和突變(mutation)運算,並利用數學證明效率組合編碼法確實可以縮小簡單資源分配問題的解答搜尋空間,並利用許多不同大小實例來評估效率組合編碼法,實驗結果顯示新的染色體編碼模式可以提升遺傳演算法的演化效能,由此可見縮小解答搜尋空間確實可以減少遺傳演算法的演化代數。
由於全球經濟的快速發展,在整體競爭環境下,有效率的協調各部門的生產計劃漸漸增加其重要性,對一個跨國公司而言,如何有效地管理其分散式生產工廠是一項重要的挑戰,且經常成為一策略性的議題。於是,許多跨國公司在其整體運作上皆發展出更加複雜、昂貴的生產規劃系統,這些規劃系統主要是根據工廠的生產產能限制和各市場的需求,來分派各工廠生產足夠產品的數量,以滿足各市場的需求,使得其總生產成本最小化。所以,本研究將舉例說明如何利用有效率的染色體編碼模式和適合的演化運算,能夠成功地應用在遺傳演算法上有效的減少解答搜尋空間,以求解生產分配問題(production allocation problems),並獲取好的效能。
因此,本研究提出另一新的染色體編碼方式,稱為路徑編碼法(path-encoding method),其將動態規劃(dynamic programming)決策路徑擁有上下限的概念應用於遺傳演算法的染色體編碼上,縮小解答搜尋範圍,並結合遺傳演算法的隱含平行處理特性來演化,藉以改善動態規劃在遇到複雜的NP問題時無法保證在多項式時間內找到滿意解。亦即新的路徑編碼法可將生產分配問題的兩個條件限制式編入染色體中,以提升遺傳演算法的效能,而為了讓整個演化過程能夠正確的運行,本研究亦提出了特殊的路徑交配和突變運算,並利用屬於NP複雜的生產分配問題來評估此新方法的效能,其同時比較了四種方法---路徑編碼法、組合編碼法、懲罰式編碼法和整數規劃法(integer programming),而實驗結果顯示本研究所提之路徑編碼法效果最好,在較少的演化代數裏即可求得滿意解,組合編碼法其次,因此法只將一個限制條件編入染色體中,所以仍需要一些額外的演化代數來處理非法染色體,懲罰式編碼法第三,其需要花費更多的演化代數來導引遺傳演算法搜尋到合法解的所在區域,再進而求得好的解答,但所找到的結果較差於由前兩種編碼法所求得之解,而整數規劃法充其量只能得到可行解,無法找出與遺傳演算法三種編碼方式相同的結果,由此可知本研究所提之路徑編碼法確實能夠有效的縮小染色體搜尋空間以提升遺傳演算法的演化效能。
摘要(英) This study proposes some efficient encoding evolutionary algorithms to solve the generalized resource allocation problem. First of all, we propose a novel efficient means of encoding genetic algorithms to solve the simple resource allocation problem. The problem relates to allocating limited resources across activities to maximize the return from them. The first proposed encoding method, combination encoding, can reduce the searching space of solutions because of encoding one constraint in the chromosome and thus exhibits higher performance. It need only involve a few more generations to yield sufficiently good solutions when the number of activities is increased. The penalty encoding method, however, requires many more generations to yield the same solutions. Additionally, a new simultaneous crossover and mutation operation is proposed to enable the new method of encoding chromosomes run correctly following standard genetic algorithm procedures. In addition to the mathematical certification, the performance of this approach is evaluated on some test problems of various variable sizes. Solutions obtained by this approach are always efficient.
Due to the rapid worldwide economic development, global competition is increasing the importance of effectively coordinating production planning among the subsidiaries of multinationals. In a competitive global environment, managing the distributed production plants of an international company is a significant challenge and frequently becomes a strategic issue. Hence, numerous international companies have developed more complex and expansive planning systems for their global operations. These plans involve varying the location of manufacturing according to market demand, and aim to minimize costs for a multinational company subject to capacity constraints and market requirements. This paper also demonstrates the feasibility of successfully applying genetic algorithms to the production allocation problem, but requires the use of an efficient encoding method and adaptive operation mode. The new efficient encoding method can significantly reduce the search space of solutions and obtain a high performance.
Therefore, this study presents another new approach, called the path-encoding method, which encodes two constraints into the chromosome and adapts the idea of dynamic programming for genetic algorithms to enhance the performance of evolutionary process. To allow correct running of the efficient encoding method through evolution procedures, a specialized path crossover and mutation operation is simultaneously proposed herein. The NP-hard production allocation problem is used to evaluate the effectiveness of the approach. This experiment compares the proposed approach to the combination-encoding method, the penalty-encoding method and integer programming. The computed results show that the proposed approach is always feasible and outperforms the others because it narrows the solution search space effectively.
關鍵字(中) ★ 資源分配問題
★ 生產分配問題
★ 組合編碼法
★ 動態規劃
★ 路徑編碼法
★ 遺傳演算法
關鍵字(英) ★ Production Allocation Problems
★ Genetic Algorithms
★ Combination Encoding
★ Path Encoding
★ Generalized Resource Allocation Problems
★ Dynamic Programming
論文目次 Abstract 1
1. Introduction 1
2. Problem definition 6
2.1. Generalized Resource Allocation Problems 6
2.2. Production Allocation Problems 9
2.3. NP-Hardness of the Production Allocation Problems 12
3. Genetic algorithms and Dynamic Programming 16
3.1. Genetic Algorithms 16
3.2. Dynamic Programming 18
4. Genetic Algorithms for Generalized Resource Allocation Problems 20
4.1. Penalty Encoding for Generalized Resource Allocation Problems 21
4.2. Combination Encoding for Generalized Resource Allocation Problems 22
4.3. Mathematical Certification 27
4.4. Comparisons between Combination Encoding and Penalty Encoding 31
5. Genetic Algorithms for Production Allocation Problems (PAPs) 33
5.1. Penalty Encoding for Production Allocation Problems 33
5.2. Combination Encoding for Production Allocation Problems 35
5.3. Path Encoding for Production Allocation Problems 40
6. Computational results 53
6.1. Computational results of GA for Simple Resource Allocation Problems 53
6.2. Computational results of GA for Production Allocation Problems 57
7. Conclusions 63
Reference 66
參考文獻 Ahmadi, R.H. and P. Kouvelis, “Design of electronic assembly lines: An analytical framework and its application.” European Journal of Operational Research, Vol.115, Issue: 1, pp. 113-137, 1999.
Ahuja, R.K., J.B. Orlin, and A. Tiwari, “A Greedy Genetic Algorithm for The Quadratic Assignment Problem.” Computers & Operations Research, Vol.27, pp.917-934, 2000.
Al-Tabtabai, H. and A.P. Alex, “An Evolutionary Approach to the Capital Budgeting of Construction Projects.” Cost Engineering, Vol.40, No.10, pp.28-34, 1998.
Bellman, R.E. and S.A. Dreyfus, Applied Dynamic Programming, Princeton University Press, Princeton, NJ, 1962
Bhatnagar, R., P. Chandra and S.K. Goyal, “Models for Multi-plant Coordination.” European Journal of Operational Research, 67(2), pp.141-160, 1993.
Biethahn, J. and V. Nissen, Evolutionary Algorithms in Management Applications, Springer, 1995.
Bitran, G.H. and A.C. Hax, “Dissagregation and resource allocation using convex knapsack problems with bounded variables.” Management Science, 27, pp.431-441, 1981.
Bretthauer, K.M. and B. Shetty, “A pegging algorithm for the nonlinear resource allocation problem.” Computers & Operations Research, Vol.29, Issue: 5, pp. 505-527, 2002.
Bretthauer, K.M., A. Ross and B. Shetty, “Nonlinear integer programming for optimal allocation in stratified sampling.” European Journal of Operational Research, Vol.116, Issue: 3, pp. 667-680, 1999.
Burk, E.K. and J.P. Newall, “A Multistage Evolutionary Algorithm for the Timetable Problem.” IEEE Transactions on Evolutionary Computation, Vol. 3, No.1, pp.64-74, 1999.
Cai, J. and G. Thierauf, “Evolution Strategies for Solving Discrete Optimozation Problems.” Advances in Engineering Software, 25, pp.177-183, 1996.
Chang, S.C., “A new aircrew-scheduling model for short-haul routes.” Journal of Air Transport Management, Vol.8, Issue: 4, pp. 249-260, 2002.
Chang, T. J., N.Meade, J.E. Beasley and Y.M. Sharaiha, “Heuristics for cardinality constrained portfolio optimization.” Computers & Operations Research, Vol.27, Issue: 13, pp. 1271-1302, 2000.
Chang, Y.H., “A New Combination Encoding of Genetic Algorithms for Timetabling Problems.” In: K.K. Lai, O. Katai, M. Gen and B. Liu., Proceedings of the Second Asia-Pacific Conference on Genetic Algorithms and Applications, pp.98-107, 2000.
Charnes, A. and W.W. Cooper, “The theory of search: Optimal distribution of effort.” Management Science, 5, pp.44-49, 1958.
Chatterjee, S., C. Carrera and Lynch, L.A., “Genetic algorithms and traveling salesman problems.” European Journal of Operational Research, Vol. 93, pp. 490-510, 1996.
Cheng, C.E.; Z.L. Chen and C.L. Li, “Single-machine scheduling with trade-off between number of tardy jobs and resource allocation.” Operations Research Letters, Vol.19, Issue: 5, pp. 237-242, 1996.
Cheng, R., M. Gen and Y. Tsujimura, “A tutorial survey of job-shop scheduling problems using genetic algorithms--I. Representation.” Computers and Industrial Engineering, Vol.30, pp.983-997, 1996.
Cheng, R., M. Gen and Y. Tsujimura, “A tutorial survey of job-shop scheduling problems using genetic algorithms, part II: hybrid genetic search strategies.” Computers and Industrial Engineering, Vol.36, pp.343-364, 1999.
Chockalingam, T. and S. Arunkumar, “Genetic algorithm based heuristics for the mapping problem.” Computers & Operations Research, Vol.22, pp.55-64, 1995.
Chockalingam, T. and S. Arunkumar, “Genetic algorithm based heuristics for the mapping problem.” Location Science, Vol.4, pp.282-283, 1996.
Chu, P.C. and J.E. Beasley, “A Genetic Algorithm for The Generalized Assignment Problem.” Computers & Operations Research, Vol 24, No.1, pp.17-23, 1997.
Corbett, C.J., J.C. Debets and L.N. Van Wassenhove, “Decentralization of responsibility for site decontamination projects: A budget allocation approach.” European Journal of Operational Research, Vol.86, Issue: 1, pp. 103-119, 1995.
Dagli, C.H. and S. Sittisathanchai, “Genetic neuro-scheduler: A new approach for job shop scheduling.” International Journal of Production Economics, Vol.41, Issue: 1-3, pp. 135-145, 1995.
Della, C., R. Tadei and G. Volta, “A Genetic Algorithm for the job shop problem.” Computers & Operations Research, Vol.22, pp.15-24, 1995.
Deris, S., S. Omatu, H. Ohta and P. Saad, “Incorporating constraint propagation in genetic algorithm for university timetable planning.” Engineering Applications of Artificial Intelligence, Vol.12, Issue: 3, pp. 241-253, 1999.
Dreyfus, S.A. and M.L. Averill, The Art and Theory of Dynamic Programming, Academic Press, New York, 1997.
Dror, M., M. Haouari and J. Chaouachi, “Generalized spanning trees.” European Journal of Operational Research, Vol.120, Issue: 3, pp. 583-592, 2000.
Einbu, J.M., “Extension of Luss-Gupta resource allocation algorithm by means of first order approximation.” Techniques, 29, pp.621-626, 1981.
Elton, E., M. Gruber and M. Padberg, “Simple criteria for optimal Portfolio selection.” J. Finance, 31, pp.1341-1357. 1976.
Federgruen, A. and P. Zipkin, “Solution techniques for some allocation problems.” Mathematical Programming, 25, pp-13-24, 1983.
Frank, H. and B. Thomas, “Genetic Algorithms and Evolution Strategies: Similarities and Differences”, System Analysis Research Group Technical Report, No.Sys-1/92, Feb. 1992.
Garai, G. and B.B. Chaudhuri, “A cascaded genetic algorithm for efficient optimization and pattern matching.” Image and Vision Computing, Vol.20, Issue: 4, pp. 265-277, 2002.
Garavelli, A.C., O.G. Okogbaa, and N. Violante, “Global Manufacturing Systems: A Model Supported by Genetic Algorithms to Optimize Production Planning.” Computers and Industrial Engineering, 31, pp.193-196, 1996.
Golany, B., F.Y. Phillips and J.J. Rousseau, “Optimal design of syndicated panels: A mathematical programming approach.” European Journal of Operational Research, Vol.87, Issue: 1, pp. 148-165, 1995.
Goldberg, D.E., Genetic Algorithm in search, optimization and machine learning. Addison Wesley, 1989.
Holland, J., Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor, Michigan, 1975.
Holmes, J.H., P.L. Lanzi, W. Stolzmann and S.W. Wilson, “Learning classifier systems: New models, successful applications.” Information Processing Letters, Vol.82, Issue: 1, pp. 23-30, 2002.
Hou, Y.C. and Y.H. Chang, “A New Efficient Encoding Mode of Genetic Algorithms for the Generalized Plant Allocation Problem.” accepted by Journal of Information Science and Engineering, 2003.
Hou, Y.C. and Y.H. Chang, “The new efficient hierarchy combination encoding method of evolution strategies for production allocation problems.” Computers and Industrial Engineering, Vol.43, Issue: 3, pp. 577-589, 2002.
Hussein, M.L. and M.A. Abo-Sinna, “ A fuzzy dynamic approach to the multicriterion resource allocation problem.” Fuzzy Sets and Systems, 69, pp.115-124, 1995.
Ibaraki, T. and N. Katoh, Resource Allocation Problems-Algorithmic Approaches, The MIT Press, 1988.
Ibaraki, T., “Solving mathematical programming problems with fractional objective functions.” in S. Schaible and W.T. Ziemba (eds.), Generalized Concavity in Optimization and Economics, New York: Academic Press, pp.441-472. 1981.
Jourdan, L., C. Dhaenens, E.G. Talbi and S. Gallina, “A data mining approach to discover genetic and environmental factors involved in multifactorial diseases.” Knowledge-Based Systems, Vol.15, Issue: 4, pp. 235-242, 2002.
Katayama, K., H. Sakamoto and H. Narihisa, “The Efficiency of Hybrid Mutation Genetic Algorithm for the Travelling Salesman Problem.” Mathematical and Computer Modelling, Vol.31, pp.197-203, 2000.
Kikuchi, H., A. Otake and S. Nakanishi, “Functional completeness of hierarchical fuzzy modeling.” Information Sciences, Vol.110, Issue: 1-2, pp. 51-60,1998.
Kochhar, J.S., B.T. Foster and S.S. Heragu, “HOPE: A genetic algorithm for the unequal area facility layout problem.” Computers & Operations Research, Vol.25, Issue: 7-8, pp. 583-594, 1998.
Koopman, B.O., “The theory of search: part III, the optimum distribution of searching effort.” Operations Research, 5, pp.613-626, 1957.
Korpela, J., K. Kyläheiko, A. Lehmusvaara and M. Tuominen, “An analytic approach to production capacity allocation and supply chain design.” International Journal of Production Economics, Vol.78, Issue: 2, pp. 187-195, 2002.
Kotler, P., Marketing Decision Making: A Model Building Approach, New York: Holt, Rinehart and Winston, 1976.
Kumar, K. R. and G. C. Hadjinicola, “Resource allocation to defensive marketing and manufacturing strategies.” European Journal of Operational Research, Vol.94, Issue: 3, pp. 453-466, 1996.
Lai, K.K. and L. Li, “A dynamic approach to multiple-objective resource allocation problem.” European Journal of Operational Research, 117, pp.293-309, 1999.
LeBlanc, L.J., A. Shtub and G. Anandalingam, “Formulating and solving production planning problems.” European Journal of Operational Research, Vol.112, Issue: 1, pp. 54-80, 1999.
Lee, S.M., L.J. Moore and B.W. Taylor, Management Science, Wmc.C. Brown, Dubuque, IA, 2nd ed., 1985.
Levine, D., “Application of a hybrid genetic algorithm to airline crew scheduling.” Computers & Operations Research, Vol.23, Issue: 6, pp. 547-558, 1996.
Lewis, H.F. and S.A. Slotnick, “Multi-period job selection: planning work loads to maximize profit.” Computers & Operations Research, Vol.29, Issue: 8, pp. 1081-1098, 2002.
Li, D.C., H.K. Lin, and K.Y. Torng, “A Strategy for Evolution of Algorithms to Increase The Computational Effectiveness of NP-Hard Scheduling Problems.” European Journal of Operational Research, Vol.88, pp.404-412, 1996.
Li, Y., W.H. Ip and D.W. Wang, “Genetic algorithm approach to earliness and tardiness production scheduling and planning problem.” International Journal of Production Economics, Vol.54, Issue: 1, pp. 65-76, 1998.
Lootsma, F.A. “Alternative Optimization Strategies for Large-Scale Production–Allocation Problems.” European Journal of Operational Research, 75(1), pp.13-40, 1994.
Louis, S.J. and G. Li, “Case injected genetic algorithms for traveling salesman problems.” Information Sciences, Vol.122, Issue: 2-4, pp. 201-225, 2000.
Luss, H. and S.K. Gupta, “Allocation of effort resource among competing activities.” Operations Research, 23(2), pp.260-366, 1975.
Magyar, G.., M. Johnsson and O. Nevalainen, “An adaptive hybrid genetic algorithm for the three-matching problem.” IEEE Transactions on Evolutionary Computation, Vol.4, pp.135 –146, 2000.
Maniezzo, V., M. Dorigo and A. Colorni, “Algodesk: An experimental comparison of eight evolutionary heuristics applied to the Quadratic Assignment Problem.” European Journal of Operational Research, Vol.81, Issue: 1, pp. 188-204, 1995.
Moon, C., J. Kim, G. Choi and Y. Seo, “An efficient genetic algorithm for the traveling salesman problem with precedence constraints.” European Journal of Operational Research, Vol.140, Issue: 3, pp. 606-617, 2002.
Nachtigall, K. and S. Voget, “A genetic algorithm approach to periodic railway synchronization.” Computers & Operations Research, Vol.23, Issue: 5, pp. 453-463, 1996.
Naumova, N.I., “Nonsymmetric equal sacrifice solutions for claim problem.” Mathematical Social Sciences, Vol. 43, Issue: 1, pp. 1-18, 2002.
Neyman, J., “On two different aspexts of the representative method: the method of stratified sampling and the method of selection.” J. Roy. Stat. Soc., 97, pp.558-606, 1934.
Nishizaki, I. and M. Sakawa, “Fuzzy cooperative games arising from linear production programming problems with fuzzy parameters.” Fuzzy Sets and Systems, Vol.114, Issue: 1, pp. 11-21, 2000.
Nissen, V., “Solving The Quadratic Assignment Problem With Clues From Native.” IEEE Transactions on Neural Networks, Vol. 5, No.1, pp.66-72, 1994.
Noh, S.J., “Resource distribution and stable alliances with endogenous sharing rules.” European Journal of Political Economy, Vol.18, Issue: 1, pp. 129-151, 2002.
Numhauser, G.L., Introduction to Dynamic Programming, Wiley, New York, 1966.
Ozdemir, H.T. and C.K. Mohan, “Flight graph based genetic algorithm for crew scheduling in airlines.” Information Sciences, Vol.133, pp.165-173, 2001.
Papadimitriou, C.H., Computational Complexity, Addison Wesley, 1994.
Rechenberg, I., Evolutionsstrategie. Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. Frommann-Holzboog, Stuttgart, 1973.
Rechenberg, I., Evolutionsstrategie’94. Frommann-Holzboog, Stuttgart, 1994.
Sakawa, M. and R. Kubota, “Fuzzy programming for multiobjective job shop scheduling with fuzzy processing time and fuzzy duedate through genetic algorithms.” European Journal of Operational Research, Vol.120, Issue: 2, pp. 393-407, 2000.
Schmitt, L.J. and M.M Amini, “Performance characteristics of alternative genetic algorithmic approaches to the traveling salesman problem using path representation: An empirical study.” European Journal of Operational Research, Vol.108, Issue: 3, pp. 551-570, 1998.
Schnecke, V. and O. Vornberger, “Hybrid genetic algorithms for constrained placement problems.” IEEE Transactions on Evolutionary Computation, Vol.1, pp.266 –277, 1997.
Schwefel, H.P., Evolution and Optimum Seeking. John Wiley, New York, 1995.
Schwefel, H.P., Numerische Optimierung von Computer-Modellen mittels der Evolutionsstrategie. Birkhauser, Basel, 1977.
Sharpe, W.F., “A simplified model for portfolio analysis.” Management Science, 9, pp.277-293, 1963.
Shun Ngan, P., M. Leung Wong, W. Lam, K.S. Leung and C.Y. Cheng, “Medical data mining using evolutionary computation.” Artificial Intelligence in Medicine, Vol.16, Issue: 1, pp. 73 - 96, 1999.
Srikantan, K.S., “A problem in optimum allocation.” Operations Research, 18, pp.265-273, 1963.
Tate, D.M. and A.E. Smith, “A Genetic approach to the quadratic assignment problem.” Computers & Operations Research, Vol.22, pp.73-83, 1995.
van der Veen, J.A.A., G.J. Woeginger and S. Zhang, “Sequencing jobs that require common resources on a single machine: A solvable case of the TSP.” Mathematical Programming, Vol.82, Issue: 1-2, pp. 235-254, 1998.
Wang, L. and D.Z. Zheng, “An effective hybrid optimization strategy for job-shop scheduling problems.” Computers & Operations Research, Vol.28, pp.585-596, 2001.
Winston, W.L., Operations Research-Applications and Algorithms, Pws-Kent, Boston, 1991.
Xia, Y, B. Liu, S. S. Wang, and K.K. Lai, “A model for portfolio selection with order of expected returns.” Computers & Operations Research, Volume: 27, Issue: 5, pp. 409-422, 2000.
Yagiura, M. and T. Ibaraki, “The Use of Dynamic Programming In Genetic Algorithms for Permutation Problems.” European Journal of Operational Research, Vol.92, pp.387-401, 1996.
Zhou, H., Y. Feng and L. Han, “The hybrid heuristic genetic algorithm for job shop scheduling.” Computers and Industrial Engineering, Vol.40, pp.191-200, 2001.
Ziegler, H., “Solving certain singly constrained convex optimization problems in production planning.” Operations Research Letters, 1, pp.246-252, 1982.
指導教授 侯永昌(Young-Chang Hou) 審核日期 2003-7-8
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明