博碩士論文 86443008 詳細資訊


姓名 柯博昌( Po-Chang Ko)  查詢紙本館藏   畢業系所 資訊管理學系
論文名稱 未來高速多媒體網際網網路上之下一代寬頻路由器設計與研究
(Design and Analysis of Next-Generation Broadband Switching Router Systems Architecture in Future High-Speed Multimedia-Oriented Internet)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 目前MPEG規格是影像、視訊、與聲音的全世界最重要標準,隨著其全面應用的多樣化,MPEG標準已從最初的MPEG-1改進到MPEG-4,而MPEG-4的物件導向化觀念,在現今網路軟體作業平台環境與物件導向程式語言的發展趨勢配合下,對於未來的即時多媒體應用,將扮演絕對重要的角色,因為無論影像、視訊、或聲音等,當其物件化後,在Internet的服務品質(Quality of Service:QoS)將可獲得更進一步的控制與改善。
為確保多媒體視訊可在Internet上得到最佳的服務品質,主要在以ATM Switch為基礎的下一代路由器架構使用RSVP通訊協定確保其保證頻寬,它是一連接導向為主的架構,最主要的優點是只要虛擬路徑及通道一旦建立,便不需對每個封包進行Routing,所以傳輸速度較快,但也相對產生缺點,因為此種傳輸方式需要某種程度保留路由器的傳輸資源,所以,若有某些通道或路徑保留了某些傳輸資源,卻無法充份利用,則會形成另一種資源浪費。在上述MPEG-4標準提出後,將更突顯此一情況,因為目前各視訊、影像的顯示系統不盡相同,聲音的播放系統也不盡相同,隨著『隨選視訊』(VOD)在近幾年逐漸受到重視,這也意味著多媒體應用的多重傳播功能將在未來的多媒體導向的Internet上扮演關鍵性角色,而這也愈加暴露RSVP在這方面的不足。
另外,由於無線通訊網路的日益普及,可移動式終端系統如Notebook、PDA與行動電話等的普遍使用。隨著可用頻寬在無線通訊網路上的快速成長,多媒體在無線通訊網路上的傳輸也將在未來網際網路上扮演不可或缺的角色,同樣的,RSVP在這方面的缺乏與不足也更將捉襟見肘。
在傳統有線網路的發展上,近幾年Label Switching技術愈來愈受到重視,而這也將在未來路由器設計上扮演重要的角色,所以本研究所提出的各種解決方法也將完全適用於此一架構。
由以上所述可知,本研究將從介質存取控制協定、無線通訊網路的支援、多媒體標準格式、保證服務品質與改善路由策略等五大方向描繪未來多媒體導向的?頻路由器架構設計與分析。首先,本研究將提出一個無碰撞式的MAC通訊協定,以進一步加速無線通訊網路上的效能。其次,利用Flow與MPEG特性,本研究發展許多更快速的路由策略以加速多媒體封包在實際網路上的效能。第三,本研究將設計並發展一嶄新的動態(Dynamic) RSVP通訊協定(DRSVP),以達成下列目標: 1. 對不同的終端系統分別提供足夠的解析度。2. 有效控制網路上的封包大小及交通流量,使所保留的網路資源可以完全利用。3. 當路由器發生過度擁塞,所保留的資源通道與路徑可以適當的加以調整。除此之外,DRSVP也特別著重支援無線通訊網路與有線網路上Label Switching技術的支援。
最後,由於目前網路網路上路由器的路由方式可分為兩大類,一為連結導向的路由器,一為非連結導向的路由器,前者適用於大流量的資料傳送,如多媒體應用服務等,而後者則適用於小流量的資料傳送,如ICMP等。本研究將提出一模組化的新代寬頻路由器架構,以模組方式結合連結導向模組與非連結導向模組的優點,並對其效能進行分析與評估,進一步勾勒未來整合各網路應用服務特性的路由器架構。
摘要(英) MPEG is the international standard of image, video and audio. Its evolution is from MPEG-1 to MPEG-4. The object-oriented concept is a critical characteristic of MPEG-4, which can benefit software operating environment, object-oriented programming language and real-time multimedia applications. In order to obtain better or acceptable QoS of multimedia services in the future multimedia-oriented Internet, it might be the best approach at this moment to use RSVP in the router. The advantage of this approach is that no routing action is needed for every packet after the virtual path and virtual channel are established. Due to bandwidth control, the QoS of multimedia services can be better. However, because some resources of the router are reserved, it might have some resources not fully utilized. If MPEG-4 is used, the situation can be improved. Because the end systems of multimedia services might be different from one another, the guaranteed bandwidth for transmitting necessary information volume are different. This study will design a new Dynamic RSVP (DRSVP) protocol for achiving better QoS by using MPEG-4.
In addition, due to the importance of wireless communications networks and mobile computing systems, many portable devices, such as notebook, PDA, mobile phone and etc., are widely used. Because the available bandwidth grows rapidly in the wireless communication network, multimedia application services play indispensable roles in the future Internet. Simultaneously, RSVP runs short of ways in dealing with the support in the wireless communication network.
The Label Switching Technology attracts many attentions in the conventional wired network, currently. So, it’s important that every solution proposed in this study is suitable to this architecture.
As described above, this study describes the next-generation broadband switching systems router architecture from five categories: MAC protocol, wireless communication support, multimedia format, guaranteed QoS and improving routing strategy. At first, this study proposes a collision-free MAC protocol to improve the routing efficiency in the wireless communication network. Then, using the characteristics of flow and MPEG, this study proposes several more efficient and rapider routing strategies. Third, this study designs and develops an all-new resource reservation protocol — Dynamic RSVP (DRSVP) to achieve the following goals. 1. Provide different necessary resolutions for different end systems. 2. Efficient control the traffics on Internet to fully utilize the reserved resources and bandwidth. 3. The reserved resources can be dynamically adjusted when congestion occurs. Especially, DRSVP emphasizes the support for the wireless communication network and the Label Switching technology in the wired network.
Finally, the current routing methods are classified into the connection-oriented switch and connectionless router. The former is suitable for the great quantity transmission of traffics, such as multimedia. And, the latter is suitable for the small-scale traffics, such as ICMP. Combining the advantages of the above two methods, this study proposes modularized router architecture to plot the next-generation broadband switching router systems architecture in future Internet.
關鍵字(中) ★ 寬頻路由器
★ 展頻多重存取
★ 源保留協定
★ 服務品質
★ 無線通訊
★ 細胞通訊
★ 隨選視訊
關鍵字(英) ★ Broadband Switching Router
★ SSMA
★ RSVP
論文目次 COVER
ACKNOWLEDGMENT
CHINESE ABSTRACT
ABSTRACT
CONTENTS
CHAPTER1.INTRODUCTION
1.1 MULTIMEDIA FORMAT-MPEG
1.2 QoS-RSVP
1.3 WIRELESS AND CELLULAR COMMUNICATION NETWORK
1.4 QoS AND CELLULAR COMMUNICATION NETWORK
1.5 IP LABEL SWITCHING TECHNOLOGY
1.6 ROUTING STRATEGIES
CHAPTER2.LITERATURE REVIEW
2.1 MULTIMEDIA TRANSMISSION STRATEGIES
2.2 GUARANTEED QoS
2.3 WIRELESS COMMUNICATION TECHNOLOGY
2.4 CELLULAR COMMUNICATION TECHNOLOGY
2.5 IP LABEL SWITCHING TECHNOLOGY
2.6 REROUTING SOLUTION
2.7 ANALYSIS METHOD
CHAPTER3.NEXT-GENERATION BROADBAND SWITCHING ROUTER SYSTEMS ARCHITECTURE
3.1 EFFICIENT MAC PROTOCOL
3.2 EFFICIENT ROUTING STRATEGY
3.3 MULTIMEDIA AND GUARANTEED QoS SUPPORT
3.4 WIRELESS COMMUNICATION SUPPORT
3.5 MODUALE-BASED ARCHITECTURE
CHAPTER4.A COLLISION-FREE MAC PROTOCOL IN WIRELESS LAN
4.1 MULTIPLE ACCESS ARCHITECTURE
4.2 MULTIPLE ACCESS PROTOCOL
4.3 PERFORMANCE EVALUATIONS
CHAPTER5.USING THE CHARACTERISTICS OF PACKETS TO ACHIEVE BETTER PERFORMANCE
5.1 FLOW-ORIENTED SWITCHING ROUTER ARCHITECTURE
5.2 SCHEDULING STRATEGIES-SFROCF,SFRF,AND LFRF
5.3 SIMULATION RESULTS
CHAPTER6.USING THE CHARACTERISTICS OF MPEG-2 TO ACHIEVE BETTER PERFORMANCE
6.1 MPEG-2 VIDEO CODING
6.2 ATM SWITCHING ROUTER ARCHITECTURE
6.3 A NEW SCHEDULING STRATEGY
6.4 PERFORMANCE ANALYSIS
CHAPTER7. DYNAMIC RSVP PROTOCOL
7.1DYNAMIC RESERVATION MODEL
7.2 DYNAMIC RSVP PROTOCOL MECHANISMS
7.3 AN EXAMPLE OF DRSVP RESERVATION PROTOCOL
CHAPTER8.DRSVP SUPPORT IN WIRELESS ENVIRONMENT
8.1DYNAMIC RSVP LOCATION MANAGEMENT PROTOCOL
8.2AN EXAMPLE OF DRSVP IN MOBILE HOST
8.3 PERFORMANCE ANALYSIS
CHAPTER9.DRSVP SUPPORT IN MPLS ARCHITECTURE AND WIRELESS ENVIRONMENT
9.1 AHLSR ARCHITECTURE
9.2 AHLSR PROTOCOL
9.3 PERFORMANCE ANALYSIS
CHAPTER10.A PROBABILISTIC RESOURCE ESTIMATION AND SEMI-RESERVATION SCHEME IN CELLULAR NETWORK
10.1 RESOURCE ESTIMATION AND RESERVATION MODEL
10.2 RESOURCE ESTIMATION AND RESERVATION SCHEME
10.3 PERFORMANCE ANALYSIS
CHAPTER11.MODULARISED BROADBAND SWITCHING ROUTER ARCHITECTURE
11.1BROADBAND SWITCHING ROUTER SYSTEM ARCHITECTURE
11.2 QUEUE LENGTH AND WAITING TIME ANALYSIS
11.3 SATURATION ANALYSIS
CHAPTER12.CONCLUSIONS AND FUTURE RESEARCH
12.1 BETTER MAC PROTOCOL
12.2 ENHANCED ROUTING STRATEGY
12.3 GUARANTEED QOS
12.4 GUARANTEED QOS,WIRELESS NETWORK AND MULTIMEDIA
12.5 GUARANTEED QOS,MULTIMEDIA AND CELLULAR COMMUNICATION NETWORK
12.6 MODULARISED ROUTER ARCHITECTURE
12.7 FUTURE RESEARCH
REFERENCES
參考文獻 [1]Acharya A., Li J. and Raychaudhuri D., “Mobile ATM: Architecture, Protocols and Implementation,” Proc. of IEEE BSS’97, Taipei, Taiwan, pp. 115-119, Dec. 2-4, 1997.
[2]Acharya A., Li J. Rajagopalan B. and Raychaudhuri D., “Mobility Management in Wireless ATM Networks,” IEEE Commun. Mag., pp. 100-109, Nov., 1997.
[3]Acharya A., Li J., Ansari F. and Raychaudhuri D., “Mobility Support for IP over Wireless ATM,” IEEE Commun. Mag., pp. 84-88, Apr., 1998.
[4]Agrawal S., “IP Switching,” http://www.cis.ohio-state.edu/~jain/cis788-97/ip_switching, 1997.
[5]Anderson T. E., Owicki S. S., Saxe J. B. and Thacker C. P., “High-Speed Switch Scheduling for Local-Area Networks,” ACM Trans. on Computer Systems, 11, no. 4, pp. 319-52, 1993.
[6]Awduche D. et al., “Extensions to RSVP for Traffic Engineering,” Internet Draft, draft-swallow-mpls-rsvp-trafeng-00.txt, Aug. 1998.
[7]Bar-Noy A. and Kessler I., “Tracking Mobile Users in Wireless Communications Networks,” Proc. of IEEE INFOCOMM’93, San Francisco, CA, pp. 1232-1239, Mar. 1993.
[8]Bharghavan V., Demers A., Shenker S. and Zhang L., “MACAW: A Media Access Protocol for Wireless LAN’s,” ACM SIGCOMM ’94, pp. 212-225, Aug. 1994.
[9]Bottomley G. E., “Signature Sequence Selection in a CDMA System with Orthogonal Coding,” IEEE Trans. Commun., vol. 42, no. 1, pp. 62-68, Feb. 1993.
[10]Braden R. et al., “Resource ReSerVation Protocol (RSVP) — Version 1 Functional Specification,” RFC 2205, Sep. 1997.
[11]Braden R., Clark D. and Shenker S., “Integrated Services in the Internet Architecture: an Overview,” RFC 1633, ISI, MIT, and PARC Jun. 1994.
[12]Butto M., Cavallero E. and Tonietti A., “Effectiveness of the ‘Leaky Bucket’ Policing Mechanism in ATM Networks,” IEEE JSAC, Vol. 9, Apr. 1991, pp. 335-42.
[13]Chhaya H. S. and Gupta S., “Performance of Asynchronous Data Transfer Methods of IEEE 802.11 MAC Protocol,” IEEE Person. Commun., pp. 8-15, Oct. 1996.
[14]Chiariglione L., “MPEG and Multimedia Communications,” IEEE Trans. on Circuits and Systems for Video Tech., vol. 7, no. 1, pp. 5-18, Feb. 1997.
[15]Davie B., Doolan P. and Rekhter Y., “Switching in IP Networks: IP Switching, Tag Switching, and Related Technologies,” Morgan Kaufmann Publishers, Inc., 1998.
[16]Du Y., Herrmann C., May P., Hulyalkar S. N. and Evans D., “Wireless ATM LAN with and without Infrastructure,” Proc. of IEEE BSS’97, Taipei, Taiwan, pp. 120-128, Dec. 2-4, 1997.
[17]Du Y., Herrmann C., May P., Hulyalkar S. N. and Evans D., “Wireless ATM LAN with and without Infrastructure,” Proc. of IEEE BSS’97, Taipei, Taiwan, pp. 120-128, Dec. 2-4, 1997.
[18]Ebersman H. G. and Tonguz O. K., “Handoff Ordering Using Signal Prediction Priority Queuing in Personal Communication Systems,” IEEE Trans. on Vehicular Technology, vol. 48, no.1, pp. 20-35, Jan. 1999.
[19]Enge P. K. and Sarwate D. V., “Spread-Spectrum Multiple-Access Performance of Orthogonal Codes: Linear Receivers,” IEEE Trans. on Commun., vol. COM-35, Dec. 1987.
[20]Fakciner D., “A System Architecture for Broadband Millimeter-Wave Access to an ATM LAN,” IEEE Personal Commun., pp. 36-41, Aug. 1996.
[21]Fankhauser G. et al., “RSVP Support for Mobile IP Version 6 in Wireless Environments,” Internet Draft, draft-fhns-rsvp-support-in-mipv6-00.txt, Nov. 1998.
[22]Gall D. L., “MPEG: A Video Compression Standard for Multimedia Applications,” Commun. ACM, vol. 34, no. 4, Apr. 1991, pp 45-58.
[23]Geiger R. L., Solomon J. D. and Crisler K. J., “Wireless Network Extension Using Mobile IP,” IEEE Micro, vol. 17.6, pp.63-68, Nov.-Dec., 1997.
[24]Giovanardi A. and Mazzini G., “Transparent Mobile IP: An Approach and Implementation,” Proc. of IEEE GLOBECOM’97, vol. 3, pp. 1861-1865, 1997.
[25]Golestani S. J., “Congestion-free Communication in High-Speed Packet Networks,” IEEE Trans. on Commun., Dec. 1991, pp. 1802-12.
[26]Gopalakrishnan R. and Parulkar G. M., “Efficient User-Space Protocol Implementations with QoS Guarantees Using Real-Time Upcalls,” IEEE/ACM Trans. on Networking, vol. 6, no. 4, pp. 374-388, Aug. 1998.
[27]Gray M., MIT, http://www.mit.edu/people/mkgray.
[28]Grossglauser M., Kershav S. and Tse D., “RCBR: A Simaple and Efficient Service for Multiple Time-scaleTraffic,” Proc. ACM SIGCOMM ’95, Cambridge, MA, Sept. 1995.
[29]Gupta A. K. and Georganas N. D., “Analysis of a Packet Switch with Input and Output Buffers and Speed Constraints,” Proc. of IEEE INFOCOM’91, Bal Harbour, FL, pp. 694-700, Apr. 1991.
[30]Ha? A. and Liu B., “Database and Location Management Schemes for Mobile Communications,” IEEE/ACM Trans. on Networking, vol. 6, no. 6, pp. 851-865, Dec. 1998.
[31]Hluchyj M. G. and Karol M. J., “Queueing in High-Performance Packet Switching,” IEEE J. Select. Areas Commun., vol. 6, no. 9, pp. 1587-1597, Dec. 1988.
[32]Huang A. and Knauer S., “Starlite: A Wideband Digital Switch,” Proc. of IEEE GLOBECOM ’84, Atlanta, GA, pp. 121-125, Nov. 1984.
[33]Hui J. and Arthurs E., “A Broadband Packet Switch for Integrated Transport,” IEEE J. Select. Areas Commun., vol. SAC-5, no.8, pp. 1264-1273, Oct. 1987.
[34]IEEE Standards Dept., Draft Std. IEEE 802.11, “Wireless LANs (P802.11D3),” 1996.
[35]Jain R., “Congestion Control in Computer Networks: Issues and Trends,” IEEE Network, pp. 24-30, May 1990.
[36]Jain R., Rajagopalan S., Chang L. F. and Varma V., “Wireless Interwotking Architectures to Support Mobile IP over ATM,” Proc. of IEEE GLOBECOM’97, vol. 3, pp. 1866-1870, 1997.
[37]Jung H., Mishra S. and Tonguz O. K., “Efficient Location Management in PCS,” IEEE Symposium on Personal, Indoor and Mobile Radio Commun. (PIMRC’95), New York, USA, vol. 1, pp. 284-288, Sep. 1995.
[38]Karol M. J., Eng K. Y. and Obara H., “Improving the Performance of Input-Queued ATM Packet Switches,” Proc. of IEEE INFOCOM’92, pp. 110-115, 1992.
[39]Karol M. J., Hluchyj M. G. and Morgan S. P., “Input versus Output Queueing on a Space-Division Packet Switch,” IEEE Trans. Commun., vol. COM-35, no. 12, pp. 1347-1356, Dec. 1987.
[40]Koenen R., “Overview of the MPEG-4 Standard,” Mar. 1999 Seoul, South Korea.
[41]Kuo G. S. and Cheng H. C., “Analysis on IP Label Switching Technology in Future Broadband Internet,” submitted for publication.
[42]Kuo G. S. and Cheng H. C., “Analysis on IP Label Switching Technology in Future Broadband Internet — (II),” submitted for publication.
[43]Kuo G. S. and Cheng H. C., “Improvement on IP Label Switching Technology in Future Broadband Internet,” Proc. IEEE BSS’99, Jun. 1999.
[44]Kuo G. S. and Ko P. C., “Achieving 90% Throughput in A Flow-Oriented Input-Queued Switching Router System,” Proc. 8th IFIP High Perf. Networking, Vienna, Austria, Sept. 21-25, 1998.
[45]Kuo G. S. and Ko P. C., “Achieving Minimum Slice Loss for Real-Time MPEG-2-Based Video Networking in a Flow-Oriented Input-Queued ATM Switching Router System,” IEEE Commun. Mag., pp. 58-62, Jan. 1999.
[46]Kuo G. S. and Ko P. C., “Dynamic RSVP Protocol,” Proc. of 2000 IEEE Workshop on IP-Oriented Operations and Management (IPOM 2000), in Cracow, Poland, on September 4-6, 2000.
[47]Kuo G. S. and Ko P. C., “Dynamic RSVP Support for Mobile IPv6 in Wireless Environment,” Proc. of 2000 IEEE Vehicular Technology Conference (VTC ’2000), in Tokoya, Japan, on May 16-20, 2000.
[48]Lam S. S. and Xie G. G., “Burst Scheduling: Architecture and Algorithm for Switching Packet Video,” Proc. of IEEE INFOCOM’95, Boston, MA, USA, Apr. 1995, pp. 8a.1.1-11.
[49]Lee T. T., “A Modular Architecture for Very Large Packet Switches,” IEEE Trans. Commun., vol. 38, no. 7, pp. 1097-1106, Jul. 1990.
[50]Lehnert J. S. and Pursley M. B., “Error Probabilities for Binary Direct-Sequence Spread-Spectrum Communications with Random Signature Sequences,” IEEE Trans. Commun., vol. COM-35, pp. 85-96, Jan. 1987.
[51]Leu Y. and Cheng C. L., “Implementation Considerations for Mobile IP,” Proc. of 21th COMPSAC’97, pp. 478-481, 1997.
[52]Levine D. A., Akyildiz I. F. and Naghshineh M., “A Resource Estimation and Call Admission Algorithm for Wireless Multimedia Networks Using the Shadow Cluster Concept,” IEEE/ACM Trans. on Networking, vol. 5, no. 1, pp. 1-12, Feb. 1997.
[53]Lottor M., “Network Wizards,” http://www.nw.com.
[54]Madhow U. and Pursley M. B., “Acquisition in Direct-Sequence Spread-Spectrum Communication Networks: An Asymptotic Analysis,” IEEE Trans. Infom. Theory, vol. 39, pp. 903-912, May 1993.
[55]Madhow U., Honig M. L. and Steiglitz K., “Optimization of Wireless Resources for Personal Communications Mobility Tracking,” IEEE/ACM Trans. on Networking, vol. 3, no. 6, pp. 698-707, Dec. 1995.
[56]Mascolo S., Cavendish D. and Gerla M., “ATM Rate Based Congestion Control Using a Smith Predictor: an EPRCA Implementation,” Proc. of IEEE INFOCOM’96, San Francisco CA, Mar. 1996, pp. 5b.2.1-5b.2.8.
[57]McKeown N., Mekkittikul A., Anantharam V. and Walrand J., “Achieving 100% Throughput in an Input-Queued Switch (extended version),” submitted to IEEE Trans. Commun.
[58]McKeown N., Varaiya P. and Walrand J., “Scheduling Cells in an Input-Queued Switch,” Electron. Lett., vol. 29, no. 25, pp. 2174-2175, Dec. 1993.
[59]Mehaoua A. and Boutaba R., “A Hybrid VBR/ABR Service for Scalable MPEG2 Video Networking: A Simulation-based Analysis,” Proc. IEEE BSS’97, Taipei, Taiwan, pp. 88-95, Dec. 2-4, 1997.
[60]Morrow R. K., Jr. and Lehnert J. S., “Bit-to-Bit Dependence in DS/SSMA Packet Systems with Random Signature Sequences,” IEEE Trans. Commun., vol. COM-35, pp. 1052-1061, Oct. 1989.
[61]Newman P., Lyon T. and Minshall G., “Flow Labelled IP: A Connectionless Approach to ATM,” Proc. of IEEE INFOCOM‘96, San Francisco, CA, pp. 1251-1260, Mar. 1996.
[62]Ohsaki H. et al., “Performance Evaluation of Rate-based Congestion Control Algorithms in Multimedia ATM Networks,” Proc. of IEEE GLOBECOM’95, Singapore, Nov. 1995, pp. 1243-48.
[63]Oliveira C., Kim J. B. and Suda T., “An Adaptive Bandwidth Reservation Scheme for High-Speed Multimedia Wireless Networks,” IEEE J. on Select Areas in Commun., vol.16, no.6, pp. 858-874, Aug. 1998.
[64]Pahlavan K. and Chase M., “Spread-Spectrum Multiple-Access Performance of Orthogonal Codes for Indoor Radio Communications,” IEEE Trans. on Commun., vol. COM-38, pp. 574-577, May 1990.
[65]Pancha P. and Zarki M. E., “A Look at the MPEG Video Coding Standard for Variable Bit Rate Video Transmission,” Proc. of IEEE INFOCOM’92, May 1992, pp. IC.2.1-10.
[66]Pancha P. and Zarki M. E., “Prioritized Transmission of Variable Bit Rate MPEG Video,” Proc. of IEEE GLOBECOM’92, Orlando, FL, pp. Dec 1992, 1135-39.
[67]Parry R. R., “Mobility and the Internet,” IEEE Potentials, vol. 172, pp. 8-10, Apr.-May, 1998.
[68]Pattavina A. and Bruzzi G., “Analysis of Input and Output Queueing for Nonblocking ATM Switches,” IEEE/ACM Trans. Networking, vol. 1, no. 3, pp. 314-328, Jun. 1993.
[69]Pattavina A., “Design and Performance Evaluation of a Packet Switch for Broadband Central Offices,” Proc. of IEEE INFOCOM’90, San Francisco, CA, pp. 1252-1259, Jun. 1990.
[70]Perkin C. E., “Mobility Networking through Mobile IP,” IEEE Internet Computing, vol. 21, pp. 58-69, Jan.-Feb., 1998.
[71]Perkins C. E., “Mobile IP,” IEEE Commun Mag., pp. 84-99, May, 1997.
[72]Perkins C., editor. “IP Mobility Support,” RFC 2002, Oct., 1996.
[73]Peterson R. L., Zimer R. E. and Borth D. E., “Introduction to Spread Spectrum Communications,” Asia: Prentice-Hall, International Edition, 1996.
[74]Picholz R. L. et al., “Theory of Spread Spectrum Communications- A Tutorial,” IEEE Trans. on Commun., vol. COM-30, pp. 855-884, May 1982.
[75]Pickholtz R. L., Milstein L. B. and Schilling D. L., “Spread Spectrum for Mobile Communications,” IEEE Trans. Vehicular Tech., vol. 40, pp. 313-322, May. 1991.
[76]Rajagopalan S., Jain R. and Chang L. F., “Mobile Internetworking Protocols for Wireless Networks with ATM Backbones,” Proc. of MILCOM’97, vol. 2, pp. 660-664, 1997.
[77]Ramanujan R. S. et al., “Media Transport Service for Video Retrieval Applications on ATM Networks,” Proc. 20th Conf. Local Comp. Net. Minneapolis, MN, Oct. 1997, pp. 422-31.
[78]Rose C., “State-Based Paging/Registration: A Greedy Technique,” IEEE Trans. on Vehicular Technology, vol. 48, no.1, pp. 166-173, Jan. 1999.
[79]Rosen E. et al., “A Proposed Architecture for MPLS,” Internet Draft, draft-ietf-mpls-arch-00.txt, Aug. 1997.
[80]Rowe H. E., “Bounds on the Number of Signals with Restricted Cross Correlation,”IEEE Trans. Commun.,” vol. COM-30, pp. 966-974, May 1982.
[81]Shapiro J. M., “Embedded Image Coding Using Zerotrees of Wavelet Cofficients,” IEEE Trans. on Signal Processing., vol. 41, no. 12, pp. 3445-3462, Dec. 1993.
[82]Sikora T., “The MPEG-4 Video Standard Verification Model,” IEEE Trans. on Circuits and Systems for Video Tech., vol. 7, no. 1, pp. 19-31, Feb. 1997.
[83]Sikora T., “The Structure of the MPEG-4 Video Coding Algorithm,” http://wwwam.hhi.de/mpeg-video/papers/sikora/fmpeg4vm.htm
[84]Tripathi N. D., Reed J. H. and VanLandingham H. F., “Handoff in Cellular Systems,” IEEE Personal Commun., pp. 26-37, Dec. 1998.
[85]Turner J., “Design of a Broadcast Packet Switching Network,” IEEE Trans. Commun., vol. COM-36, no. 6, pp. 734-743, Jun. 1988.
[86]Umehira M., Nakura M., Sato H. and Hashimoto A., “ATM Wireless Access for Mobile Multimedia: Concept and Architecture,” IEEE Personal Commun., pp. 39-48, Aug. 1996.
[87]Umehira M., Nakura M., Sato H. and Hashimoto A., “ATM Wireless Access for Mobile Multimedia: Concept and Architecture,” IEEE Personal Commun., pp. 39-48, Aug. 1996.
[88]Varshney U., “Supporting Mobility with Wireless ATM,” Computer, vol. 30.1, pp. 131-133, Jan. 1997.
[89]Viterbi A. J., “Very Low Rate Convolutional Codes for Maximum Theoretical Performance of Spread-Spectrum Multiple-Access Channels, “ IEEE J. Select. Areas Commun., vol. 8, pp.641-649, May, 1990.
[90]Walke B., Petras D. and Plassmann D., “Wireless ATM: Air Interface and Network Protocols of the Mobile Broadband System,” IEEE Personal Commun., pp. 50-56, Aug. 1996.
[91]Walke B., Petras D. and Plassmann D., “Wireless ATM: Air Interface and Network Protocols of the Mobile Broadband System,” IEEE Personal Commun., pp. 50-56, Aug. 1996.
[92]Wirth P. E., “Teletraffic implications of database architectures in mobile and personal communications,” Computer Networks ISDN Syst., vol. 28, no.5, pt.0, pp. 613-618, 1996.
[93]Wroclawski J., “The Use of RSVP with IETF Itegrated Services,” RFC 2210, Sep. 1997.
[94]Yeh Y. S., Hluchyj M. G. and Acampora A. S., “The Knockout Switch: A Simple, Modular Architecture for High-Performance Packet Switching,” IEEE J. Select. Areas Commun., vol. SAC-5, no. 8, pp. 1274-1283, Oct. 1987.
[95]Yokotani T., Ichihashi T. and Ishizaka M., “Congestion Control of Multi-cast Connections in ATM Networks,” Proc. 20th Conf. Local Comp. Net., Minneapolis, MN, pp. 38-47, Oct. 1997.
[96]Zhang C. G., Harfez H. M. and Falconer D. D., “Traffic Handling Capability of a Broadband Indoor Wireless Network Using CDMA Multiple Access,” IEEE J. on Select Areas in Commun., vol. 12, no. 4, pp. 645-653, May, 1994.
[97]Zhang L., Deering S., Estrin D., Shenker S. and Zappala D., “RSVP: A New Resource ReSerVation Protocol,” IEEE Network, Sep. 1993.
[98]Zhang Y. Q. et al., “Variable Bit Rate Video Transmission in the Broadband ISDN Environment,“ Proc. IEEE, vol 79, no. 2, pp. 214-21, Feb. 1991.
指導教授 郭更生 審核日期 2001-4-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡