博碩士論文 87222023 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:184.72.212.254
姓名 皮龍庭(Lung-Ting Pee)  查詢紙本館藏   畢業系所 物理學系
論文名稱 帶電粒子在離子流中之交互作用
(Charge Particle Interactions inside an Ion Flow)
相關論文
★ 庫倫作用粒子之動力學★ 肥皂膜上的能量耗散
★ 紙片落下之行為研究★ 外加場下肥皂膜的能量耗散
★ 圓柱體在二維垂直肥皂膜之動力學★ 螺旋狀物體在剪切流中的運動行為
★ 二元高分子薄膜在平行電場下的相分離★ 纖毛不對稱運動的模擬
★ 肥皂膜流場中圓柱體之行為研究★ 單向偶極子形成的柱狀結構與非均勻電解質的平均場理論
★ 彈性懸掛棍在旋轉系統下之行為★ 膠體球在電解質溶液中的擴散泳
★ 細長彈性桿在旋轉下的非線性動力行為與動態穩定性分析★ Thermophoresis and Diffusiophoresis in Brownian Simulation with Velocity Distribution Function
★ 剛體球在不對稱垂直震盪系統中的動力學行為★ Water Strider Locomotion
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在本篇論文中,我們研究在離子流中帶電粒子之間的交互作用。離子流的速度,是設定在離子以及電子的熱速度之間 (mesothermal condition)。我們將帶電粒子其視為點電荷。我們用一個包含流動離子及波茲曼電子的線性模型,得出有關這個系統的流體力學方程式以及泊松方程式(Poisson’s equation)。經由這些線性方程式的解,找出空間中的電位以及離子密度如何分布,再進一步由此得知帶電粒子的交互作用。我們發現離子的溫度是一個很重要的參數。當溫度為零的時候,電位的最低點會發生在粒子的正後方,因此兩顆粒子會沿著離子流的方向,排列成一直線;而當離子溫度高於某個臨界值後,電位的最低點便不再位於粒子的正後方,粒子間也因此不會再沿著離子流方向排成直線。而在粒子後方,由於離子密度的疏密不同,會產生類似聲波的結構,我們發現無論超音速或是低於音速的離子流,對於這種類聲波的行為,只會造成定量上的差異。
摘要(英) ion ow is assumed in the mesothermal condition such that the ion ow velocity v0 is in the
regime of vTi << v0 << vTe , where vTi and vTe are the ion and electron thermal velocities
respectively. We treat the charge particles as point charges, and apply a linear two- uid model
containing owing ions and Boltzmann electrons. The electrostatic potential and the ion density
distribution around charge particles are found by solving the uid equations together with the
Poisson’’s equation. Inter-particle interactions are then inferred by the electrostatic potential.
We nd that upstream potential induced by a charge particle is always repulsive. On the other
hand, a potential minimum is present behind the particle. The ion temperature is an important
parameter. For a zero ion temperature, the potential minimum induced always locates directly
behind the chaege particle along the ion ow direction. If another particle is present, they will
thus align to the direction of the ion ow. For an ion temperature higher than a critical value,
the potential minimum does not occur directly behind the charge particle and the two particles
no longer align with the ion ow. The structures of the ion acoustic waves created behind the
charge particle are also studied. A supersonic ion ow makes only quantitative dierence with
the subsonic case in the behavior of the ion acoustic waves.
關鍵字(中) ★ 帶電粒子
★ 離子流
★ 電漿
★ 超音速
★ 亞音速
★ 離子聲波
關鍵字(英) ★ Charge Particle
★ Ion Flow
★ Plasma
★ supersonic
★ subsonic
★ ion acoustic wave
論文目次 Contents
1 Introduction 4
2 The Two Fluid Model and Linear Solutions 7
2.1 Basic Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 The Linear Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Numerical Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3 Results and Discussions 14
3.1 Interactions between Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1.1 Zero Ion Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1.2 Non-zero Ion Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Ion Acoustic Wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.1 Zero Ion Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.2 Non-zero Ion Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Explanation of Observations in Plasma Experiments . . . . . . . . . . . . . . . . 24
4 Conclusion 32
參考文獻 Bibliography
[1] J. Goree, Plasma Sources Sci. Technol. 3, 400 (1994).
[2] E. C. Whipple, Rep. prog. Phys. 44, 1198 (1981).
[3] E. Coggiola and A. Soubeyran, J. Geophys. Res. A 5, 7613 (1991).
[4] F. Melands° and J. Goree, Phys. Rev. E 52, 5312 (1995).
[5] F. Melands° and J. Goree, J. Vac. Sci Technol. A 14, 511 (1996).
[6] B. Chapman, Glow Discharge Processes, 1966, John Wiley and Sons, Inc.
[7] J. R Sanmartin and S. H Lam, Phys. Fluids 14, 62 (1971)
[8] H. Ikezi, Phys. Fluids. 29, 1764 (1986).
[9] J. H. Chu, J. B. Du, and Lin I, J. Phys, D 27, 296 (1994).
[10] J. H. Chu, and Lin I, Phys. Rev. Lett. 72, 4009 (1994).
[11] H. Thomas, G. E. Morll, V. Demmel, J. Goree, B. Feuerbacher, and D. M� ohlmann, Phys.
Rev. Lett. 73, 652 (1994).
[12] A. Melzer, T. Trottenberg, and A. Piel, Phys. Lett. A 191, 301 (1994).
[13] H. Washimi, and T. Taniuti, Phys. Rev. Lett. 17, 996 (1966).
[14] R. J. Mason, Phys. Fluid 13, 1042 (1970).
[15] D. W. Koopman, and D. A. Tidman, Phys. Rev. Lett. 18, 533 (1967).
[16] A. Barkan, R. L. Merlino, and N. D'Angelo, Phys. Plasmas 2, 3563 (1995).
[17] G. Praburam, and J. Goree, Phys. Plasmas 3, 1212 (1996).
[18] G. B. Murphy, D. L. Reasoner, A. Tribble, N. D'Angelo, J. S. Pickett,and W. S Kurth, J.
Geophys. Res. 94, 6866 (1989)
[19] M. Nambu, S. V. Vladimirov, and P. K. Shukla, Phys. Lett. A 203 40 (1995).
[20] F. Melands°, Phys Rev. E 55, 7495 (1997)
指導教授 陳培亮(Peilong Chen) 審核日期 2000-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明