博碩士論文 87222035 詳細資訊


姓名 孫富國( Fu-Kuo Shun)  查詢紙本館藏   畢業系所 物理學系
論文名稱 高分子在二元混合溶劑之二維蒙地卡羅模擬研究
(Polymers In a BinaryMixture Solvent:Monte Carlo Simulation StudiesOn A Two Dimensional System)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(英) (or be called monomer). Polymers in binary mixture solvent belong to the class of multicomponent
system and present a fundamental interest. They show peculiar properties
near the critical region. The critical point will shift to another point and critical exponents
also change to another value. The polymer structure and its location has different
change when the temperature decrease over the critical point gradually.
In chapter one, Introduction, the history of polymer development will be mentioned
and the briefly properties of binary mixture are also be mentioned.
In chapter two, Theoretical and Experimental Backgrounds, the mathematical
properties will be mentioned to realize some polymer physics. The critical phenomenon
is also an important background.
In chapter three, The Simulation Method, we will study how to simulate the
dynamical system in the computer and our system–binary mixture with linear polymers
– will also be introduced.
In chapter four, Result and Discussions, we will analyse our data and try to explain
the physical mechanism in the system.
論文目次 Abstract ii
Acknowledgement iii
1 Introduction 1
1.1 Introduction to Polymer . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Introducion to BinaryMixture . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Introduction to this system. . . . . . . . . . . . . . . . . . . . . . . . . . 6
2 Theoretical and Experimental Backgrounds 10
2.1 Polymer Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.1 Polymer properties . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.2 The physical picture of a polymer chain . . . . . . . . . . . . . . 13
2.1.3 The dynamic properties of polymers . . . . . . . . . . . . . . . . 27
2.2 The Critical Phenomenon . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.2.1 The Definition of Phase Transition . . . . . . . . . . . . . . . . . 29
2.2.2 The Classification of Phase Transition . . . . . . . . . . . . . . . 30
2.2.3 Order Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.2.4 Correlation Function . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.2.5 Critical Behavior and Exponents . . . . . . . . . . . . . . . . . . 36
3 The Simulation Method 38
3.1 TheMonte Carlomethod . . . . . . . . . . . . . . . . . . . . . . . . . . 38
iv
3.1.1 RandomVariables and Stochastic Process . . . . . . . . . . . . . 40
3.1.2 Importance Sampling . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.1.3 TheMetropolisMethod . . . . . . . . . . . . . . . . . . . . . . . 43
3.2 The Bond FluctuationModel . . . . . . . . . . . . . . . . . . . . . . . . 46
3.3 Model for the Polymer Systemwith a binarymixture solvent . . . . . . . 47
4 Results and Discussions 50
4.1 Pure BinaryMixture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2 BinaryMixture with Polymers . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2.1 PolymersWhich Has No Interaction. . . . . . . . . . . . . . . . . 56
4.2.2 Polymers InteractingWith The BinaryMixture Solvent . . . . . . 59
4.3 Polymer Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.3.1 Polymers have no interactions . . . . . . . . . . . . . . . . . . . . 67
4.3.2 Polymers have interactions . . . . . . . . . . . . . . . . . . . . . . 68
Appendices 80
A The Program for Binary Mixture with Polymers 80
Bibliography 91
參考文獻 [1] Alexander Yu. Grosberg and Alexei R. Khokhlov, Giant Molecules (Academic
Press,1997)
[2] J. H. Hildebrand, Solubility of Non-electrolytes (Reinhold, New York, 1936)
[3] J. S. Rowlinson, Liquids and Liquid Mixtures (Butterworth, London, 1969)
[4] J. G. Kirkwood and I. Oppenbeim, Chemical Thermodynamics (McGraw-Hill, New
York, 1961)
[5] F. Brochard, P. G. de Gennes, Ferroelectrics , 30, 33 (1980).
[6] T. A. Vilgis, A. Sans, G. Jannink, J. Phys. II , 3, 1779 (1993).
[7] M. Stapper, T. A. Vilgis, Europhys. Lett., 42, 7 (1998).
[8] M. McHugh, F. Rindfleisch, P. T. Kunz, C. Schmalz, M. Buback, polymer , 39, 6049
(1998).
[9] M. J. Solomon, S. J. M‥uller, J. Polym. Sci., Part B: Polym. Phys., 34, 181 (1996).
[10] R. A. Frost, D. Caroline, Macromolecules, 10, 616 (1977).
[11] A. C. van Asten, W. T. Kok, H. Poppe, J. Polym. Sci., Part B: Polym. Phys., 34,
283 (1996).
[12] W. Nierling, E. Nordmeier, Polym. J., 29, 795 (1997).
[13] P. W. Zhu, D. H. Napper, Macromol. Chem. Phys., 200, 1950 (1999).
[14] K. To, H. Choi, Phys. Rev. Lett., 80, 536 (1998).
[15] M. Doi, Introduction to Polymer Physics (CLARENDON PRESS, OXFORD, 1996)
[16] Alexander Yu. Grosberg and Alexei R. Khokhlow, Statistical Physics of Macromolecules,
(AIP Press, 1994)
[17] M. Doi and S. F. Eduards, The Theory of Polymer Dynamics, (CLARENDON
PRESS, OXFORD 1986)
91
Bibliography 92
[18] Pierre-Gilles de Gennes, Scaling Concepts in Polymer Physics, (CORNELL UNIVERSITY
PRESS, Ithara and London, 1988)
[19] Kerson Huang, Statistical Mechanics, (John Wiley & Sons 1987)
[20] L. E. Reichl, A Modern Course in Statistical Physics 2nd Edition (John Wiley &
Sons 1997)
[21] J. M. Yeomans, Statistical Mechanics of Phase Transitions (CLARENDON PRESS,
OXFORD 1992)
[22] Richard E.Wilde and Surjit Singh, Statistical Mechanics, Fundamentals and Modern
Applications, (John Wiley & Sons 1997)
[23] C. Domb and M. S. Green, Phase Transitions and Critical Phenomena Volume 5a
(ACADEMIC PRESS 1976)
[24] C. Domb and M. S. Green, Phase Transitions and Critical Phenomena Volume 8
(ACADEMIC PRESS 1983)
[25] C. Domb and M. S. Green, Phase Transitions and Critical Phenomena Volume 12
(ACADEMIC PRESS 1988)
[26] Harvey Gould and Jan Tobochnik, An Introduction to Computer Simulation Methods,
Applications to Physical Systems, (Addison-Wesley 1996)
[27] K. Binder and D. W. Heermann, Monte Carlo Simulation in Statistical Physics, An
Introduction (1988)
[28] David P. Landau and Kurt Binder, A Guide to Monte Carlo Simulations in Statistical
Physics, (CAMBRIDGE 2000)
[29] S. Jain, Monte Carlo Simulations of Disordered Systems, (World Scientific 1992)
[30] P. Y. Lai and K. Binder, J. Chem. Phys., 95, 9288 (1991)
[31] P. Y. Lai and K. Binder, J. Chem. Phys., 97, 586 (1992); Macromol. Chem. Macromol.
Symp., 65, 189 (1993)
[32] P. Y. Lai and E. B. Zhulina, J. Phys. II (Paris), 2, 547 (1992)
[33] P. Y. Lai and E. B. Zhulina, Macromolecules, 25, 5201 (1992)
[34] P. Y. Lai, J. Chem. Phys., 98,669 (1993); 100, 3351 (1994)
[35] P. Y. Lai and J. A. Chen, Phys. Rev. E, 51, 2272 (1995)
Bibliography 93
[36] I. Carmesin and Kurt Cremer, J. Phys. France, 51, 915 (1990)
[37] J. J. Magda, G. H. Fredrickson, R. G. Larson and E. Helfand, Macromolecules, 21,
726 (1988)
[38] Kiwing To, Phys. Rev. E, 63, 026108 (2001)
[39] M. E. Fisher and M. S. Green, Critical Phenomena (Academic Press, London, 1971)
[40] V. Privman, Finite Size Scaling and Numerical Simulation of Statistical Systems
(World Scientific, Singapore 1990)
[41] K. Binder, C. B. Lang and H. Gausterer, Computational Methods in Field Theory
(Springer, Berlin 1992)
指導教授 黎璧賢(Pik-Yin Lai) 審核日期 2001-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡