博碩士論文 87224007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:3.228.220.31
姓名 黃明偉(Ming-Wey Huang)  查詢紙本館藏   畢業系所 地球物理研究所
論文名稱 以地表位移量推算921地震時車籠埔斷層之錯動參數
(Determination the Chelungpu Fault Dislocation Parameters from Geophysical Observables during the Chi-Chi Earthquake of September 21, 1999)
相關論文
★ 利用S波與尾波探求蘭陽平原局部場址效應★ 利用921地震序列之強地動資料對台灣強地動衰減模式與反應譜速估之研究
★ 1999年集集地震序列強地動峰值隨方位角變動及以偏極化分析輔助地震定位方法之研究★ 九二一集集大地震序列各地累積絕對速度值(CAV)之研究
★ 以反應譜比值法推求地震時結構物振動行為之研究★ 紅河斷裂帶地震活動以及東南亞地殼與上部地函構造之研究
★ 台灣地區地震危害度的不確定性分析與參數拆解★ 台灣小規模地震再發統計模式參數研究
★ 台灣ShakeMap震度之研究-以九二一集集地震序列為例★ 斷層錯動、地殼變位及強地動與地震災害相關性之研究: 以1935年及1999年台灣中部兩次地震為例
★ 利用傅氏振幅譜比法分析全台灣強震站的場址★ 以Gamma Model對台灣餘震叢集現象之研究
★ 台灣西南部GPS資造時間序列分析與地殼變形模式研究★ 機率式地震誘發山崩危害度分析–以國姓地區為例
★ 探討地震發震構造之辨識與分布:以集集地震序列為例★ 1999年集集大地震前後地震活動、震源機制及地殼應力分佈與變化之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 1999年9月21日發生規模ML7.3的大地震,震央位於南投縣集集地區。該次地震主要為車籠埔斷層之錯動所引起,在斷層沿線及廣大地區造成嚴重的災害與傷亡。無論是野外觀察與GPS資料都顯示車籠埔斷層為一逆衝斷層且具有左向滑移特性,根據豐富的GPS地表位移觀測值以及由中央氣象局各地強地動記錄雙積分後之永久位移量,藉由斷層滑動模型,求得車籠埔斷層之錯動參數。
本研究方法:將車籠埔斷層依位移量大小分為北、中、南三個區段,分別求取各區段斷層錯動參數。最初以二維的斷層滑動模型(Cohen, 1996)決定斷層之傾角、斷層面底邊的深度以及斷層之傾向滑移量。繼之以三維的斷層滑動模型(Okada, 1992)決定其左向滑移量與斷層面之長度。最後,進一步計算車籠埔斷層錯動所造成的地震矩與平均應力降。
本研究結果:北端區段一的斷層平均滑動量為11.7公尺(逆衝量為8公尺,左移量為9公尺),斷層面之長度與寬度分別為23.2公里與20.6公里,傾角為向東29度,本區段的滑動量最大;中間區段二的斷層平均滑動量為7.6公尺(逆衝量為6.5公尺,左移量為5.5公尺),斷層面之長度與寬度分別為13.4公里與20.6公里,傾角為向東29度;南端區段三的斷層平均滑動量為5.4公尺(逆衝量為5公尺,左移量為2.5公尺),斷層面之長度與寬度分別為26.5公里與20.6公里,傾角為向東29度。以上斷層模擬結果與震源機制解相近,計算出之地震矩總和為 - ,以及平均應力降為106.1 bar。
由本研究結果可以獲得下列幾點結論:
1.車籠埔斷層大體上可視為一向東傾斜的平面構造。
2.本研究最初使用簡易的二維斷層滑動模式,以快速決定車籠埔斷層之錯動量。
3.經由地表位移觀測值與計算值之比對,求得斷層滑動面向東下傾約達深度10公里。
4.中央氣象局所定集集主震震源深度為8公里,位於本研究求得斷層滑動面之下。這可能原因為本研究所求得之斷層面過於簡化,或是震源深度可以定淺一些。
5.車籠埔斷層錯動所引起之地下應變場與地下水位觀測井所觀測到的水位變化有顯著的正相關性,即體積膨脹率為正值之地區有地下水位下降現象。反之,體積膨脹率為負值之地區有地下水位上升之現象。
6.由集集大地震餘震之震源機制可以發現,因車籠埔斷層錯動所引起之地表面以下之應變場,在具有正斷層機制區域的應變場並未解除區域性壓應力所導致之逆衝斷層機制。
摘要(英) An earthquake (Mw=7.6, ML=7.3) occurred near the town of Chi-Chi in Nantou County in central Taiwan at 1: 47 a.m., September 21, 1999 (local time). The Chi-Chi earthquake produced a rich set of data on surface deformation caused by dislocation of the Chelungpu fault. This study used analytical formulas for a 2-D fault model(Cohen, 1996) and a rectangular fault model (Okada, 1992) to determine the Chelungpu fault dislocation parameters. We compared both the GPS data and integrated strong motion displacement data with the calculated results from the fault models.
The Chelungpu fault was divided into three regions in this study. The fault parameters of Section 1(northern part) are : fault length 23.2 kilometers, fault width 20.6 kilometers, dip angle 29 degrees and vector fault slip 11.7 meters; Section 2 (middle part): fault length 13.4 kilometers, fault width 20.6 kilometers, dip angle 29 degrees and vector fault slip 7.6 meter. Section 3 (southern part) : fault length 26.5 kilometer, fault width 20.6 kilometers, dip angle 29 degrees and vector fault slip 5.4 meters. Using these parameters we can obtain the seismic moment and average stress drop as - and 106.1 bars, respectively.
The conclusions of this study can be summarized as follows:
1. The Chelungpu fault can be approximated as a simple plane and dipping east.
2. By using a simplified 2-D model we can determine the fault dislocation parameters rapidly.
3. The fault was dipping east and reached a depth of 10 kilometers by comparing the observed and calculated data.
4. The hypocenter of Chi-Chi earthquake was 8 kilometers (CWB), this location is below the fault plane found in this study. This could because our fault slip model is too simple or the depth of hypocenter should be shallower.
5. The co-seismic deformation caused strain changes below the earth surface. We can correlate these strain changes with water level changes during earthquake. There is positive correlations between volume dilatation or contraction and water level changes.
6. From the focal mechanisms of Chi-Chi aftershocks we can find that the stress changes of the Chelungpu fault slip didn’t release completely the regional compressional stress.
關鍵字(中) ★ 集集大地震
★ 車籠埔斷層
★ 斷層參數
關鍵字(英) ★ Chi-Chi earthquake
★ Chelungpu fault
★ fault dislocation parameters
論文目次 第一章 緒論
1.1 研究動機與目的........................................1
1.2 文獻回顧 .............................................1
1.3 本文內容 .............................................2
第二章 研究區域地質背景
2.1 地體構造 .............................................4
2.2 地震分佈特性 .........................................4
2.3 研究區域地質狀況 .....................................9
第三章 研究方法與資料來源
3.1 研究方法 ............................................12
3.1.1 二維斷層滑動模型 .................................12
3.1.2 三維有限矩形斷層滑動模型 .........................19
3.2 資料來源 ............................................24
3.2.1 GPS測量資料 ......................................24
3.2.2 中央氣象局之強震地動資料 .........................27
第四章 研究成果與討論
4.1 二維的斷層滑動模式計算結果 ..........................39
4.2 三維的斷層有限滑動模式計算結果 ......................47
4.3 集集大地震餘震分佈 ..................................55
4.4 討論 ................................................58
4.4.1 彈性反彈學說 .....................................58
4.4.2 同震變形與地下水位面之變化 .......................70
4.4.3 集集大地震所造成之應變情形 .......................81
第五章 結論...............................................84
參考文獻...................................................86
附錄.......................................................90
英文摘要..................................................113
參考文獻 Alewine, R. W. (1974). Application of linear inversion theory toward the estimation of seismic source parameters, Ph. D. Thesis, California Institute of Technology, Pasadena, California, 303 pp.
Angelier, J. (1986). Preface to the special issue on “ Geodynamics of the Eurasian-Philippine Sea Plate Boundary ” : Tectonophysics, vol. 125, pp. IX-X.
Angelier, J. (1986). Preface to the special issue on “ Geodynamics of the Eurasian-Philippine Sea Plate Boundary ” : Tectonophysics, vol. 125, pp. IX-X.
Chinnery, M. A. (1961). The deformation of the ground around surface faults, Bull. Seism. Soc. Am. 51, 355.
Chinnery, M. A. (1963). The stress changes that accompany strike-slip faulting, Bull. Seism. Soc. Am. 53, 921.
Chiu, H. C. (1997). Stable baseline correction of digital strong motion data, Bull. Seism. Soc. Am. 87, No. 4, 932-944.
Chiu, H. C. (1997). Stable baseline correction of digital strong motion data, Bull. Seism. Soc. Am. 87, No. 4, 932-944.
Cohen. S. (1996). Convenient formulas for determining dip-slip fault parameters from geophysical observables, Bull. Seism. Soc. Am.
86, 1642-1644.
86, 1642-1644.
Freund, L. B. and D. M. Barnett (1976). A two-dimensional analysis of surface deformation due to dip-slip faulting, Bull. Seism. Soc. Am.
66, 667-675.
66, 667-675.
Igarashi, G., and H. Wakita (1991). Tidal response and earthquake-related changes in the water level of deep wells, J. Geophys. Res. 96, 4269-4278.
Iwan, W. D., M. A. Moser, and C. Y. Peng (1985). Some obsercations on strong motion earthquake measurement using a digital accelerograph, Bull. Seism. Soc. Am. 75, No. 5, 1225-1246.
Iwasaki, T. and R. Sato (1979). Strain field in a semi-infinite medium due to an inclined rectangular fault, J. Phys. Earth 27, 285-314.
Iwasaki, T. and R. Sato (1979). Strain field in a semi-infinite medium due to an inclined rectangular fault, J. Phys. Earth 27, 285-314.
Lee, C. T. (1999). “ Results of field geologic investigations of the Chi-Chi earthquake ”, personal communication.
Mansinha, L. and D. E. Smylie (1967). Effect of earthquakes on the Chandler wobble and the secular polar shift, J. Geophys. Res. 72, 4731-4743.
Mansinha, L. and D. E. Smylie (1971). The displacement field of inclined faults, Bull. Seism. Soc. Am. 61, 1433-1449.
Okada, Y.(1985). Surface deformation due to shear and tensile faults in a half-space, Bull. Seism. Soc. Am. 75, 1135-1154.
Okada, Y.(1992). Internal deformation due to shear and tensile faults in a half-space, Bull. Seism. Soc. Am. 82, 1018-1040.
Savage, J. C. and L. M. Hastie (1966). Surface deformation associated with dip-slip faulting, J. Geophys. Res. 71, 4897.
Steketee, J. A. (1958a). On Volterra’s dislocations in a semi-infinite elastic medium, Can. J. Phys. 36, 192.
Steketee, J. A. (1958a). On Volterra’s dislocations in a semi-infinite elastic medium, Can. J. Phys. 36, 192.
Roeloffs, E. A., and E. G. Quilty (1997). Water Level and strain changes preceding and following the Auguest 4, 1985 Kettleman Hills, California, earthquake, Pageoph 149, 21-60.
Roeloffs, E. A., and E. G. Quilty (1997). Water Level and strain changes preceding and following the Auguest 4, 1985 Kettleman Hills, California, earthquake, Pageoph 149, 21-60.
Suppe, J. (1981). Mechanics of mountain building and metamorphism in Taiwan : Mem. Gro1. Soc. China, 4, 67-89.
Wyatt, F. K., D. C. Agnew, and M. Gladwin (1994). Continue measurements of crustal deformation for the 1992 Landers earthquake sequence, Bull. Seism. Soc. Am. 84, No. 3, 768-779.
Yang, X. M. and P. M. Davis (1986). Deformation due to a rectangular tension crack in an elastic half-space, Bull. Seism. Soc. Am. 76, No. 3, 865-881.
Yang, X. M. and P. M. Davis (1986). Deformation due to a rectangular tension crack in an elastic half-space, Bull. Seism. Soc. Am. 76, No. 3, 865-881.
Yang, X. M. and P. M. Davis (1986). Deformation due to a rectangular tension crack in an elastic half-space, Bull. Seism. Soc. Am. 76, No. 3, 865-881.
林正洪(2000)。集集大地震主因:應力聚焦作用。中國地質學會八十九年年會大會手冊暨論文摘要,84-86頁。
黃柏壽(1989)。以定元法模擬震源空間形貌與破裂過程,中央大學地球物理研究所博士論文。
經濟部中央地質調查所(1999),九二一地震地質調查報告。
經濟部水利處(2000),九二一集集大地震地表地下水變動分析報告。
溫國樑、羅俊雄(1997),車籠埔斷層之地震危害度分析。
鍾仁光、辛在勤(1999)。集集大地震在震源區造成之永久位移。集集大地震特集,45-50頁。
徐享崑、泰啟文、鄭立新、林文勝(1999), 921地震前後中部地區地下水位變化之探討。「永續發展與地質科學展望」研討會論文集,7-35頁。
指導教授 蔡義本(Yi-Ben Tsai) 審核日期 2000-7-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明