博碩士論文 87226001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:4 、訪客IP:3.17.6.75
姓名 張展晴(Chan-Ching Chang)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 鋅離子佈植摻雜氮化鎵薄膜特性研究
(Characteristics of Zn ion implantation in GaN)
相關論文
★ 氫氣的調控對化學氣相沉積法成長石墨烯之影響★ 利用光展量概念之微型投影機光學設計方法與實作
★ 氮化銦鎵/氮化鎵多重量子井的激發光譜★ 中子質化氮化鎵材料之特性研究
★ 砷化銦鎵的電性研究與平面型PIN光偵測器的製作★ 鐵磁/超導/鐵磁單電子電晶體的製作與電子自旋不平衡現象的量測
★ 砷化鎵金屬半導體場效電晶體中p型埋藏層之效應★ 熱處理對氮化銦鎵量子井雷射結構之影響與壓電效應之分析
★ 離子佈植摻雜氮化鎵薄膜的光、電、結構特性之分析★ 離子佈植技術應用於高亮度發光二極體之設計與製作
★ 光學鍍膜在藍綠光發光二極體上的應用★ 矽離子佈植氮化鎵薄膜之電性研究
★ 繞射式元件之製程及特性分析★ 氮化銦鎵/氮化鎵量子井之光特性研究
★ 矽離子佈植在P型氮化鎵的材料分析與 元件特性之研究★ 氮化鎵高數值孔徑微透鏡之設計、製作與特性分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 這論文的主要目的是研究鋅離子佈植時,所遇到的一些重要的問題。在這裡針對三個主要問題進行探討:離子佈植造成結構上的傷害,爐管及快速熱退火處理對摻雜材料特性影響,高溫1100oC處理時氮化鎵表面的保護。
在離子佈植造成結構傷害的研究部份,鎂離子佈植矽摻雜之氮化鎵,在結構、電、光的特性研究。X光繞射光譜的半高寬沒有因為鎂的摻雜改變,在C軸面上我們觀察到,當離濃度超過1?1014 cm-2 會有兩個繞射波峰。這有可能是離子佈植層產生的應變。鎂原子的補償效應主要是在低於離濃度1?1014 cm-2。我們發現在低溫550nm光譜有藍移現象。然而這藍移的現象是提供低能階雜質,就像是高摻雜時也會發生。
在鎂元子活化能研究上,比較鎂摻雜之氮化鎵薄膜在低溫度的爐管及短時間快速的熱退火處理,對鎂活化效率及材料特性影響。電性以及光性探討分別用霍爾量測法和光激發螢光光譜。採用900oC,1分鐘快速退火,成功活化鎂摻雜氮化鎵薄膜,可以取代傳統700oC,30分鐘長時間活化處理,活化載子濃度是2.9?1017 cm-3。
鋅離子佈植和熱處理的研究部份:鋅離子濃度設定在5×1012、 5×1013 和 5×1014 cm-2 ,入射能量為200keV。再以鋅金屬鍍在氮化鎵表面,且在密封的真空石英管加熱到1100℃。這些試片在電性上的結果顯示這種離子佈植的製成,真的轉換成p型氮化鎵。電阻值介於2~10Ω-cm,載子濃度介於0.8~2.6×1017cm-3。PL也發現426nm的光譜,這有可能是和鋅的雜質有關。
摘要(英) The structural, optical and electrical properties of Mg+ ion implanted GaN:Si films were studied. The Full Width at Half Maximum (FWHM) of x-ray diffraction peak was not broadening with Mg+ low dose. In normal plane, the doubles diffraction peaks were observed while the Mg+ dose more than 1?1014 cm-2. It might be attributed to the implanted layer. The compensation effect of Mg is dominated while the Mg+ ion dose loss than 1?1014 cm-2. We have observed a similar blueshift for the 550nm peak at low temperatures. However, the blueshift is suggesting a deep-level impurity band formation, most likely caused by heavy doped.
The Mg in Mg-doped GaN films were activated as the p-type GaN by rapid thermal annealing (RTA) and furnace treatments. The Mg was activated with lower temperature and short treatment time for RTA system. The luminescence and electrical properties of the activated Mg doped GaN films were described by photoluminescence (PL) and Hall effect measurement. The Mg-related luminescence peaks with RTA treatment shown the narrow line width and strong peaks fluctuation than furnace treatment. The Mg activation efficiency with furnace treatment is higher than RTA treatment. The higher activated concentration are 2.9?1017 cm-3 and 3.6?1017 cm-3 with 900oC RTA at 1min and 700oC at 30min furnace activation.
The process of Zn ion implantation and post-heat treatment of GaN films were developed. The Zn ion dose density was set at 5×1012, 5×1013 and 5×1014 cm-2 with 200keV energy. The activation was performed at 1100℃ with a Zn metal coating on the GaN and vacuum sealed in quartz ampoule. The electrical results of these GaN samples indicated that this ion implantation process indeed convert the GaN film to be p-type electrical conductivity. The resistivity were in 2~10Ω-cm range with carrier concentration of 0.8~2.6×1017cm-3 and mobility of 7~21cm2/V.s. The PL spectrum also found that a 426nm peak which may be related to Zn impurity.
關鍵字(中) ★ 離子佈植
★ 快速熱退火
關鍵字(英) ★ implantation
★ RTA
論文目次 Contents
Abstract (in Chinese)………………………………………………....….Ⅰ
Abstract (in English)..…………………………………………….……...Ⅲ
Acknowledgment……………………………………………………….…Ⅴ
Tables Captions……………………………………………………..….…Ⅵ
Figures Captions…………………………………………………………..Ⅶ
Chapter 1 Introduction and Outline
1.1 The Background of Research on GaN Doped………...…......….1
1.2 Overview of this dissertation……………………………………2
1.3 Reference………………………………………………………..4
Chapter 2 Experimental Techniques and Relates Analysis Systems
2.1 Ion Implantation………………………………………………...5
2.2 Photoluminescence……………………………………………...5
2.3 Doping profile analysis Secondary Ion Mass Spectrometry…....6
2.4 Carrier concentration and mobility measurement by Hall measurement…………………………………….……..……….7
2.5 Crystallinity of GaN by X-Ray diffraction…………..…………7
2.6 References………………………………………………………8
Chapter 3 Electrical, structure and optical analysis of Mg ion implantation in GaN
3.1 Introduction……………………………………………………12
3.2 Experiment……………………………………………….……12
3.3 Results and Discussion……………………..…………………13
3.4 Conclusions……………………………………………………17
3.5 References………………………………………..……………18
Chapter 4 The activation of Mg in GaN by annealing with RTA and Furnace
4.1 Introduction……………………………………………………23
4.2 Experiment………………………………….…………………24
4.3 Results and Discussion……….………………….……………26
4.4 Conclusions……………………………………………………27
4.5 References ………………………….…………………………28
Chapter 5 Formation of P-type Gallium Nitride with Zn ion implantation
5.1 Introduction……………………………………………………35
5.2 Experiment……………………………….……………………35
5.3 Results and Discussion…………………………………..……37
5.4 Conclusions……………………………………………………38
5.7 References…………………………………………………..…40
Chapter6 Conclusions………………………………………………..48
參考文獻 1. S. Nakamura, T. Mukai, and M. Senoh, Jpn. J. Appl. Phys. Part 1 30, 1998 (1991).
2. H. P. Maruska and J. J. Tietjen, Appl. Phys. Lett. 15,329 (1969).
3. S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Mat-sushita, H. Kiyoku, and Y. Sugimoto, Jpn. J. Appl. Phys., Part 2 35, L74 (1996).
4. C. J. Pan and G. C. Chi, Solid State Electronics 43 621. (1999)
5. J. C. Zolper, S. J. Pearton, J. S. Williams, H. H. Tan, R. J. Karlicek, R. A. Stall, Mater. Res. Soc. Proc. Vol. 449, 981 (1997).
6. J. I. Pankove and J. A. Hutchby, J. Appl. Phys. 47, 5387 (1976)
7. M. Rubin, N. Newman, J. S. Chan, T. C. Fu, and J. T. Ross, Appl. Phys. Lett. 64, 64 (1994).
8. S. J. Pearton, C. B. Vartali and J. C. Zolper et. al., 67, 1435 (1995)
9. T. Suski, J. Jun, M. Leszczynski, and H. Teisseyre, J. Appl. Phys. 84, 1155 (1998).
10. S. J. Pearton, F. Ren, J. C. Zolper, Mat. Res. Soc. Symp. Proc. 482, 961(1998)
11. J. R. Mileham, S. J. Pearton, et. al Appl. Phys. Lett. 67, 1119 (1995)
12. C. B. Vartuli, S. J. Pearton, J. W. Lee, C. R. Abernathy, et. al Electronchem. Soc. 143, 3681(1996)
1. M. Rubin, N. Newman, J. S. Chan, T. C. Fu, and J. T. Ross, Appl. Phys. Lett. 64, 64 (1994).
2. S. J. Pearton, C. B. Vartali and J. C. Zolper et. al., 67, 1435 (1995)
3. T. Suski, J. Jun, M. Leszczynski, and H. Teisseyre, J. Appl. Phys. 84, 1155 (1998).
4. J. I. Pankove. And J. A. Hucthby, J. Appl. Phys.47, 5387 (1976)
5. C.Liu, B. Mensching, K. Volz, and B. Rauschenbach Appl. Phys. Lett. 71, 2313 (1997)
6. G. R. Lin, W. C. Chen, C. S. Chang, S. C. Chao, K. H. Wu, T. M. Hsu, E. C. Lee, and C. L. Pan, IEEE J. Quan. Electr. 34, 1 (1998)
7. M. A. Reshchikov, F. Shahedipoyr, R. Y. Korotlov, B. W. Wessels, and M. P. Ulmer J. Appl. Phys. 87 3351 (2000)
8. E. F. Schubert, I. D. Goepfert, and J. M.Redwing Appl. Pys. Lett. 71,3224 (1997)
9. X. Li, P. W. Bohn and J. J. Coleman Appl. Phys. Lett. 75, 4049 (1999)1. S. Nakamura, T. Mukai, M. Senoh, and N. Iwasa, Jpn. J. Appl. Phys., Part 2 31, L139 (1992).
2. S. Nakamura, T. Mukai, and M. Senoh, Jpn. J. Appl. Phys., Part 1 30, 1998 (1991).
3. S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Mat-sushita, H. Kiyoku, and Y. Sugimoto, Jpn. J. Appl. Phys., Part 2 35, L74 (1996).
4. H. Amano, M. Kito, K.hiramatsu, and I. Akasaki, Jpn. J. Appl. Phys. 28,L2112 (1989).
5. S. Nakamura, N. Iwasa, M. Senoh, and T. Mukai, Jpn. J. Appl. Phys., Part 1 31, 1258 (1992).
6. W. Götz, N. M. Johnson, J. Walker, D. P. Bour, H. Amano, and I. Akasaki, Appl. Phys. Lett. 67, 2666 (1995).
7. P. Hacke, T. Detchprohm, K. Hiramatsu, N. Sawaki, K. Tadatomo, and K. Miyake, J. Appl. Phys. 76, 640 (1994).
8. W. Gotz, N. M. Johnson, R. A. Street, H. Amano, and I. Akasaki, Appl. Phys. Lett. 66, 1340 (1995).
9. C. H. Qiu, C. Hoggatt, W. Melton, M. W. Leksono, and J. I. Pankove, Appl. Phys. Lett. 66, 2712 (1995).
10. C. J. Eiting, P. A. Grudowski, J. Park, D. J. H. Lambert, B. S. Shelton, and R. D. Dupuis, J. Electrochem. Soc., Vol. 144, No. 8, L219 (1997).
11. W. Götz, N. M. Johnson, J. Walker, D. P. Bour, and R. A. Street, Appl. Phys. Lett. 68, 667 (1996).
1. S. Nakamura, T. Mukai, and M. Senoh, Jpn. J. Appl. Phys. Part 1 30, 1998 (1991).
2. S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Mat-sushita, H. Kiyoku, and Y. Sugimoto, Jpn. J. Appl. Phys., Part 2 35, L74 (1996).
3. C. J. Pan and G. C. Chi, Solid State Electronics 43 621. (1999)
4. J. C. Zolper, S. J. Pearton, J. S. Williams, H. H. Tan, R. J. Karlicek, R. A. Stall, Mater. Res. Soc. Proc. Vol. 449, 981 (1997).
5. M. Rubin, N. Newman, J. S. Chan, T. C. Fu, and J. T. Ross, Appl. Phys. Lett. 64, 64 (1994).
6. S. J. Pearton, C. B. Vartali and J. C. Zolper et. al., 67, 1435 (1995)
7. T. Suski, J. Jun, M. Leszczynski, and H. Teisseyre, J. Appl. Phys. 84, 1155 (1998).
8. J. I. Pankove. And J. A. Hucthby, J. Appl. Phys.47, 5387 (1976)
9. C. F. Lin, G. C. Chi, J. D.Guo et al, Appl.Phys.Lett.68 (26)2758,24 June(1996)
10. J. K. Sheu, Y. K. Su, G.C. Chi et al, J. Appl. Phys. 83, 3172 (1998)
11. B. J. Pong, C. J. Pan, Y. C. Teng, G. C. Chi, et al, J. Appl. Phys. 83, 5992 (1998)
12. F. A Ponce, D. P. Bour, W. Gotz, and P. L. Wright, Appl. Phys Lett. 68, 57 (1996)
13. M. Kunzer, J. Baur, U. Kaufmann, J. Schneider, et al., Solid state Electronics Vol. 41. 189 (1997)
指導教授 紀國鐘(Gou-Chung Chi) 審核日期 2000-6-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明