博碩士論文 87227018 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:3.17.128.129
姓名 楊雅惠(Ya-Hui Yang)  查詢紙本館藏   畢業系所 太空科學研究所
論文名稱 日側磁層頂在同步軌道附近對強烈太陽風的反應情形
(Response of Dayside Magnetopause to Extreme Solar Wind Conditions around Geosynchronous Orbit)
相關論文
★ 日冕拋射物質對扇形邊界的影響★ Fast Magnetosonic Shocks in the interplanetary Space and Magnetosphere
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 地球磁層頂的位置會受到南向行星際磁場Bz及太陽風動壓Dp的影響,南向Bz及Dp的增強會使日側磁層頂的位置更接近地球,雖然這已是廣為人知的事實,但對於日側磁層頂在同步軌道附近對南向Bz及Dp反應的研究仍相當有限。為了瞭解宏觀尺度下日側磁層頂與強烈太陽風的交互作用情形,我們針對1986-1992年及1999-2000年間同步軌道衛星GOES有可能進入地球磁鞘的時間區段,詳細比較了每一分鐘衛星的觀測及磁層頂模型的預測結果。藉由以下三種參數:probability of prediction (PoP)、probability of detection (PoD) 及false alarm rate (FAR),我們分別估計了Petrinec and Russell [1996]、Shue et al. [1998] 及modified Chao et al. [2002] 三個磁層頂模型在強烈太陽風情形下的預測能力,愈高的PoP、PoD值及愈低的FAR值表示該模型具有愈佳的預測能力。至於相對應的太陽風參數則取自於ACE、Wind、IMP 8或 Geotail衛星的觀測結果。
根據2000年4月6日衛星的觀測資料我們發現,即使在南向行星際磁場Bz大於25 nT及太陽風動壓Dp接近8 nPa這樣強烈的太陽風情形下,GOES衛星並未觀測到磁層頂穿越同步軌道的證據,但上述三種磁層頂模型皆預測此太陽風情形足以使日側磁層頂進入同步軌道之內。我們認為此種觀測與預測不一致的現象來自於南向Bz對日側磁層頂位置的影響飽和所致,當太陽風中具有很大的南向行星際磁場分量時,此種飽和效應會使日側磁層頂內移的動作趨於停止。因此,藉由modified Chao et al. [2002] 模型估計磁層頂的位置,分析1999-2000年間可能造成GOES衛星進入地球磁鞘的Bz及Dp,在使FAR最小化及PoP最大化的前提下,我們得到了一個 與Dp的關係式, ,其中 為飽和效應發生時南向行星際磁場Bz的大小,單位為nT,而Dp的單位為nPa。將此關係式應用於modified Chao et al. [2002] 模型,以預測2001年3月31日磁層頂穿越同步軌道的情形,並與LANL MPA儀器的觀測資料相互比較,結果顯示當一磁層頂模型在考慮飽和效應之後,其預測能力的確有顯著的改善。
摘要(英) It is well known that the dayside magnetopause moves closer to the Earth with increasing southward IMF Bz and solar wind dynamic pressure Dp. But the response of magnetopause location to the southward Bz and Dp is unclear when the magnetopause locates around the geosynchronous orbit. To understand the macroscopic interaction between solar wind and dayside magnetopause under such extreme conditions, the predictions of magnetopause models are compared with the magnetosheath encounters observed by GOES spacecraft during 1986-1992 and 1999-2000. This comparison is made for each 1-min data point. Three magnetopause models, Petrinec and Russell [1996], Shue et al. [1998], and modified Chao et al. [2002], are separately examined for their forecasting capability by using the following parameters: probability of prediction (PoP), probability of detection (PoD), and false alarm rate (FAR). Higher PoP and PoD with a lower FAR imply a better forecasting model. The corresponding solar wind conditions are obtained from the upstream monitors of ACE, Wind, IMP 8 or Geotail spacecraft.
On 6 April 2000, the predicted magnetopause is inside the geosynchronous orbit for corresponding Dp ~ 8 nPa and southward Bz > 25 nT, while the magnetopause is still outside 6.6 RE for such strong solar wind condition based on the magnetic field observations of GOES spacecraft. We propose this phenomenon comes from the saturated Bz-influence on magnetopause locations when southward Bz is large such that the earthward motion of dayside magnetopause stagnates. By means of the calculations of the modified Chao et al. [2002] model, possible magnetosheath encounters at geosynchronous orbit during 1999-2000 are used to obtain a relationship between and Dp, , such that the FAR is minimized and PoP is maximized, where is the threshold of IMF Bz for saturation occurring in nT and Dp is in unit of nPa. This obtained dependence is applied to the modified Chao et al. [2002] model to compare against the magnetosheath encounters observed by the LANL MPA instruments on 31 March 2001. Our results indicate that the model’s prediction capability is indeed improved when the saturation effect is considered.
關鍵字(中) ★ 磁層頂
★ 太陽風
★ 同步軌道
關鍵字(英) ★ geosynchronous orbit
★ solar wind
★ magnetopause
論文目次 Chinese abstract
English abstract
Acknowledgement
Table of Contents
List of Figures
List of Tables
CHAPTER 1 Introduction
1.1 General Properties of the Magnetopause
1.1.1 Observations of the Magnetopause
1.1.2 Location and Shape of the Magnetopause
1.2 Geosynchronous Magnetopause Crossings
1.3 Objective and Outline of This Thesis
CHAPTER 2 Characteristics of Recent Low-Latitude Magnetopause Models
2.1 Introduction
2.2 Low-Latitude Magnetopause Models
2.2.1 Sibeck et al. [1991] Model
2.2.2 Roelof and Sibeck [1993] Model
2.2.3 Petrinec and Russell [1996] Model
2.2.4 Shue et al. [1998] Model
2.2.5 Kuznetsov and Suvorova [1998a] Model
2.2.6 Kawano et al. [1999] Model
2.2.7 Dmitriev and Suvorova [2000] Model
2.2.8 Chao et al. [2002] Model
2.3 Comparison of Magnetopause Models
2.4 Summary
CHAPTER 3 Geosynchronous and Solar Wind Observations
3.1 Introduction
3.2 Magnetosheath Encounters by Geosynchronous Spacecraft
3.2.1 GOES Magnetic Field Data
3.2.2 LANL Magnetospheric Plasma Analyzer
3.3 Solar Wind Monitors
3.4 Summary
CHAPTER 4 Analysis Method
CHAPTER 5 Prediction Results
5.1 Introduction
5.2 1986-1992 Event Study
5.2.1 Our Results
5.2.2 Comparison of Previous Results
5.3 1999-2000 Event Study
5.4 Summary
CHAPTER 6 Saturation of Southward Bz Influence on Magnetopause Locations
6.1 Introduction
6.2 Observational Evidence of Saturation Effect
6.3 Dependence of on Dp
6.4 Influence of Saturation on Forecasting
6.5 Summary
CHAPTER 7 Discussions
7.1 Dawn-Dusk Asymmetry of Magnetopause Shape
7.2 Ring Current Contributions
7.3 Identification of Northward Magnetosheath field by Hp Data
7.4 Precondition of Solar Wind
CHAPTER 8 Conclusions
References
參考文獻 Aubry, M. B., C. T. Russell, and M. G. Kivelson, Inward motion of the magnetopause before a substorm, J. Geophys. Res., 75, 7018, 1970.
Bame, S. J., D. J. McComas, M. F. Thomsen, B. L. Barraclough, R. C. Elphic, J. P. Glore, J. T. Gosling, J. C. Chavez, E. P. Evans, and F. J. Wymer, Magnetospheric plasma analyzer, MPA, for spacecraft with constrained resources, Rev. Sci. Instrum., 64, 1026, 1993.
Bierminn, L., Solar corpuscular radiation and the interplanetary gas, Observatory, 77, 109-110, 1957.
Cahill, L. J., and P. G. Amazeen, The boundary of the geomagnetic field, J. Geophys. Res., 68, 1835, 1963.
Cahill, L. J., Jr., Early studies of the boundary of the geomagnetic field: A historical review, in Physics of the magnetopause, Geophys. Monogr. Ser., vol. 90, edited by P. Song, B. U. O. Sonnerup, and M. F. Thomsen, pp. 9-15, AGU, Washington D. C., 1995.
Cahill, L. J., and J. R. Winckler, Magnetopause crossings observed at 6.6 RE, J. Geophys. Res., 104, 12,229, 1999.
Chao, J. K., D. J. Wu, C.-H. Lin, Y. H. Yang, X. Y. Wang, M. Kessel, S. H. Chen, and R. P. Lepping, Models for the size and shape of the Earth’s magnetopause and bow shock, in Cospar Colloquia series Vol. 12, Space Weather Study Using Multipoint Techniques, Edited by Ling-Hsiao Lyu, Pergamon, Elsevier Science Ltd., pp. 127-134, 2002.
Chapman, S., and V. C. A. Ferraro, A new theory of magnetic storms, Part I, The initial phase, Terr. Mag. Atmos. Elect., 36, 77-97, 171, 1931.
Coleman, P. J., Jr., Characteristics of the region of interaction between the interplanetary plasma and the geomagnetic field: Pioneer 5, J. Geophys. Res., 69, 3051, 1964.
Cummings, W. D., and P. J. Coleman Jr., Magnetic fields in the magnetopause and vicinity at synchronous altitude, J. Geophys. Res., 73, 5699, 1968.
Dmitriev, A. V. and Suvorova A. V., Three-dimensional artificial neural network model of the dayside magnetopause, J. Geophys. Res., 105, 18,909, 2000.
Dmitriev, A. V., J. K. Chao, and Y.-H. Yang, Saturation of the Bz-influence for the geosynchronous magnetopause crossings, Proceedings of the Seventh Conference on Atmospheric Science in Taiwan, September 25-27, 2001a.
Dmitriev, A. V., J. K. Chao, Y.-H. Yang, and A. V. Suvorova, Magnetopause dawn-dusk asymmetry at the geosynchronous orbit, Proceedings of the Seventh Conference on Atmospheric Science in Taiwan, September 25-27, 2001b.
Doswell, C. A. III, R. Davies-Jones, and D. L. Keller, On summary measures of skill in rear event forecasting based on contingency tables, Weather Forecasting, 5, 576, 1990.
Dungey, J. W., Cosmic Electrodynamics, Cambridge Univ. Press, Cambridge, 1958.
Dunlop, M. W., M. P. Freeman, and C. J. Farrugia, Comment on “Solar wind control of the magnetopause shape, location, and motion” by Sibeck, D. G., R. E. Lopez, and E. C. Roelof, J. Geophys. Res., 97, 10,875, 1992.
Fairfield, D. H., Average and unusual locations of the Earth’s magnetopause and bow shock, J. Geophys. Res., 76, 6700, 1971.
Fairfield, D. H., Observations of the shape and location of the magnetopause: A review, in Physics of the magnetopause, Geophys. Monogr. Ser., vol. 90, edited by P. Song, B. U. O. Sonnerup, and M. F. Thomsen, pp. 53-60, AGU, Washington D. C., 1995.
Ferraro, V. C. A., On the theory of the first phase of a geomagnetic storm: A new illustrative calculation based on idealized (plane not cylindrical) model field distribution, J. Geophys. Res., 57, 15, 1952.
Finch, H. F., and B. R. Leaton, The earth’s main magnetic field, epoch 1955, Monthly Notices Roy. Astron. Soc. Geophys. Suppl., 7, 314-317, 1957.
Formisano, V., V. Domingo, and K.-P. Wenzel, The three-dimensional shape of the magnetopause, Planet. Space Sci., 27, 1137, 1979.
Heppner, J. P., N. F. Ness, C. S. Scearse, and T. L. Skillman, Explorer 10 magnetic field measurements, J. Geophys. Res., 68, 1, 1963.
Hoffman, R. A., C. J. Cahill, Jr, R. R. Anderson, N. C. Mayard, P. H. Smith, T. A. Fritz, D. J. Williams, A. Konradi, and D. A. Gurnett, Explorer 45 (S3A) observations of the magnetosphere and magnetopause during August 4-6, 1972, magnetic storm period, J. Geophys. Res., 80, 4287, 1975.
Holzer, R. E., and J. A. Slavin, Magnetic flux transfer associated with expansions and contractions of the dayside magnetosphere, J. Geophys. Res., 83, 3831, 1978.
Itoh, K., and T. Araki, Analysis of geosynchronous magnetopause crossings, Proc. Solar Terrestrial Predictions Workshop, Hitachi, pp. 26-29, 1996.
Kawano, H., S. M. Petrinec, C. T. Russell, and T. Higuchi, Magnetopause shape determinations from measured position and estimated flaring angle, J. Geophys. Res., 104, 247, 1999.
Kuznetsov, S. N. and A.V. Suvorova, An empirical model of the magnetopause for broad ranges of solar wind pressure and Bz IMF, in Polar Cap Boundary Phenomena, edited by J. Moen et al., p. 51, Kluwer Acad., Norwell, Mass., 1998a.
Kuznetsov, S. N. and A.V. Suvorova, Solar wind magnetic field and plasma during magnetopause crossings at geosynchronous orbit, Adv. Space Res., 22, 1, 63-66, 1998 (b).
Landau, L. O., E. M. Lifshitz, Fluid Mechanics, pp. 457-459, Pergamon, New York, 1959.
McComas, D. J.,S.J. Bame, B. L. Barraclough, J. R. Donart, R. C. Elphic, J. T. Gosling, M. B. Moldwin, K. R. Moore, and M. F. Thomsen, Magnetospheric plasma analyzer (MPA): Initial three-spacecraft observations from geosynchronous orbit, J. Geophys. Res., 98, 13,453, 1993.
McComas, D. J., R. C. Elphic, M. B. Moldwin, and M. F. Thomsen, Plasma observations of magnetopause crossings at geosynchronous orbit, J. Geophys. Res., 99, 21,249, 1994.
Opp, A. G., Penetration of the magnetopause beyond 6.6 RE during the magnetic storm of January 13-14, 1967: Introduction, J. Geophys. Res., 73, 5697, 1968.
Parker, E. N., Interaction of the solar wind with the geomagnetic field, Phys. Fluids, 1, 171, 1958.
Parks, G. K., Physics of Space Plasmas: An Introduction, p. 8, Seattle, Washington, 1991.
Petrinec, S. M., P. Song, and C. T. Russell, Solar cycle variations in the size and shape of the magnetopause, J. Geophys. Res., 96, 7893, 1991.
Petrinec, S. M. and C. T. Russell, An empirical model of the size and shape of the near-Earth magnetotail, Geophys. Res. Lett., 20, 2695, 1993a.
Petrinec, S. M. and C. T. Russell, External and internal influences on the size of the dayside terrestrial magnetosphere, Geophys. Res. Lett., 20, 339, 1993b.
Petrinec, S. M. and C. T. Russell, Near-Earth magnetotail shape and size as determined from the magnetopause flaring angle, J. Geophys. Res., 101, 137, 1996.
Roelof, E. C. and D. G. Sibeck, Magnetopause shape as a bivariate function of interplanetary magnetic field Bz and solar wind dynamic pressure, J. Geophys. Res., 98, 21,421, 1993.
Rufenach, C. L., R. F. Martin Jr., and H. H. Sauer, A study of geosynchronous magnetopause crossings, J. Geophys. Res., 94, 15,125, 1989.
Russell. C. T., On the occurrence of magnetopause crossings at 6.6 RE, Geophys. Res. Lett., 3, 593, 1976.
Schaefer, J. T., The critical success index as an indicator of warning skill, Weather Forecasting, 5, 570, 1990.
Schield, M. A., Pressure balance between solar wind and magnetosphere, J. Geophys. Res., 74, 1275, 1969.
Shue, J.-H, J. K. Chao, H. C. Fu, C. T. Russell, P. Song, K. K. Khurana, and H. J. Singer, A new functional form to study the solar wind control of the magnetopause size and shape, J. Geophys. Res., 102, 9497, 1997.
Shue, J.-H., P. Song, C. T. Russell, J. T. Steinberg, J. K. Chao, G. Zastenker, O. L. Vaisberg, S. Kokubun, H. J. Singer, T. R. Detman, and H. Kawano, Magnetopause location under extreme solar wind conditions, J. Geophys. Res., 103, 17,691, 1998.
Shue, J.-H., C. T. Russell, and P. Song,, Shape of the low-latitude magnetopause: Comparison of models, Adv. Space Res., 25(7/8), 1471, 2000a.
Shue J.-H., P. Song, C. T. Russell, J. K. Chao, and Y.-H. Yang, Toward predicting the position of the magnetopause within geosynchronous orbit, J. Geophys. Res., 105, 2641, 2000b.
Shue J.-H., P. Song, C. T. Russell, M. F. Thomsen, and S. M. Petrinec, Dependence of magnetopause erosion on southward interplanetary magnetic field, J. Geophys. Res., 106, 18,777, 2001.
Sibeck, D. G., R. E. Lopez, and E. C. Roelof, Solar wind control of the magnetopause shape, location, and motion, J. Geophys. Res., 96, 5489, 1991.
Sibeck, D. G., R. E. Lopez, and E. C. Roelof, Reply, J. Geophys. Res., 97, 10,879, 1992.
Sibeck, D. G., Demarcating the Magnetopause Boundary, US National Report to IUGG 1991-1994, Rev. Geophys., Supple., 651, 1995.
Singer, H. J., G. R. Heckman, and J. W. Hirman, Space weather forecasting: A grand challenge, in Space Weather, edited by P. Song, H. J. Singer, and G. L. Siscoe, pp. 23-29, AGU, Washington D. C., 2001.
Sonett, C. P., D. L. Judge, A. R. Sims, and J. M. Kelso, A radial rocket survey of the distant geomagnetic field, J. Geophys. Res., 65, 55, 1960.
Spreiter, J. R., A. L. Summers, and A. Y. Alksne, Hydrodynamic flow around the magnetosphere, Planet. Space Sci., 14, 223-253, 1966.
Yang, Y.-H., J. K. Chao, C.-H. Lin, J.-H. Shue, X. Y. Wang, P. Song, C. T. Russell, R. P. Lepping, and A. J. Lazarus, Comparison of three magnetopause prediction models under extreme solar wind conditions, J. Geophys. Res., 107(A1), 1008, doi:10.1029/2001JA000079, 2002.
Yang, Y.-H., J. K. Chao, A. V. Dmitriev, C.-H. Lin, and D. M. Ober, Saturation of IMF Bz Influence on the Position of Dayside Magnetopause, J. Geophys. Res., 108(A3), 1104, doi:10.1029/2002JA009621, 2003.
指導教授 趙寄昆(Jih-Kwan Chao) 審核日期 2003-3-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明