博碩士論文 87241004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:55 、訪客IP:3.95.131.208
姓名 楊哲奇(Che-Chi Yang)  查詢紙本館藏   畢業系所 數學系
論文名稱 半母數混合模型估計的一致性及其應用
(Asymptotic Consistency of the Nonparametric Maximum Likelihood Estimator in a Semiparametric Model for Cure Time and Failure Time, with Application to SARS)
相關論文
★ 用Pfam-A建議BLAST之計分表(Scoring Matrix)與空格罰分(Gap Penality)★ Motif長度未知之貝氏多重序列比對方法
★ 現狀家庭數據在相關伽瑪致病傾向模型之無母數估計★ 伯氏先驗分布在貝氏存活分析 與貝氏遞升迴歸的應用
★ 利用兄弟數據之多點遺傳連鎖分析方法★ 隨機右設限數據之風險率的貝氏估計方法
★ 利用Bernstein多項式來研究二元迴歸★ 從傳染病家庭資料估計與時間相關的傳佈參數
★ 連續型變數之記數過程在傳染病資料上之應用★ 數據依賴誤差之階梯函數迴歸的貝氏方法
★ 由伯氏多項式對形狀限制的回歸函數定義最大概似估計量
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 我們提出以半母數混合模型(Semiparametric Model)來分析死亡時間(Failure Time)和治癒時間(Cure Time)的混合資料。在這模型中我們使用無母數最大概然估計量(Nonparametric Maximum Likelihood Estimate (NPMLE))來估計死亡率(Case Fatality Rate)、回歸參數(Regression Parameter)和累積風險函數(Cumulative Hazard Function)。首先、在適當的條件下建立模型參數的Identifiability。接著證明最大概然估計量的存在性並說明其為一積分方程之解。利用此積分方程及Empirical Process Theory,證得其漸近一致性(Asymptotic Consistency)。
接著,我們利用我們所得到的積分方程和得分函數(Score Function)提出一個演算法來計算無母數最大概然估計量。使用此演算法來做統計模擬,得到了令人滿意的結果,使我們確認此模型和演算法的適切性。最後,我們使用這個模型來分析台灣疾病管制局(CDC Taiwan)所提供嚴重急性呼吸道症候群(SARS)的資料。經由我們的演算法對這些資料計算所得到的結果,對台灣嚴重急性呼吸道症候群這個傳染病建構了一個應用範圍廣泛的成果。
摘要(英) In this paper, we study nonparametric maximum likelihood estimators (NPMLE) in a semiparametric mixture model for cure time and failure time. This model is motivated by the study of fatality rate, time from onset to discharge and time from onset to death for SARS (severe acute respiratory syndrome) patients. SARS patients are kept in isolation until recovery or death.
Because of no known treatment or preventive measure, it is important to know the case fatality rate and
the distribution of admission-to-death and admission-to-discharge for the study of transmission dynamics
and for better planning of patient care capacity. The identifiability of the parameters, the existence of NPMLE, and their asymptotical consistency are established under certain regularity conditions. We also propose a self-consistency based algorithm for computing the nonparametric maximum likelihood estimates
in this model.
The performance of this method is successfully demonstrated in a simulation study and in the analysis of Taiwan SARS data.
關鍵字(中) ★ 自一致方程式
★ 無母數最大概然估計量
★ 致死率
★ 漸近一致性
★ 嚴重急性呼吸道症候群
關鍵字(英) ★ nonparametric maximum likelihood estimates(NPMLE
★ self-consistency equation
★ asymptotic consistency
★ severe acute respiratory syndrome(SARS)
★ case fatality rate
論文目次 1. Introduction 1
2. Nonparametric Maximum Likelihood Estimate 5
3. Asymptotic Consistency of NPMLE 13
4. An Algorithm 21
5. A Simulation Study 23
6. Application to Taiwan SARS Data 24
7. Concluding Remarks 25
Appendix 30
References 37
參考文獻 [1] Andersen, P. K., Borgan, $O$., Gill, R. D. and Keiding, N. (1993). Statistical models based on counting processes. Springer, New York.
[2] Bickel, P. J., Klaassen, C., Ritov, Y. and Wellner, J. (1993). Efficient and adaptive estimation for semi-parametric models. Baltimore, MD: Johns Hopkins University Press.
[3] Chang, I. S., Hsiung, C. A., Wang, M. C., and Wen, C. C. (2004a). An asymptotic theory for the nonparametric maximum likelihood estimator in the
Cox-gene model. (Revised for Bernoulli).
[4] Chang, I. S., Hsiung, C. A., Wen, C. C. , and Wu, Y. J. (2004b). Isotonic regression and concave regression with random Bernstein polynomials. (Revised for Biometrika).
[5] Chen, M. H., Ibrahim, J. G., and Sinha, D. (1999). A new Bayesian model for
survival data with a surviving fraction. Journal of American Statistical Association 94, 909-919.
[6] Chen, M. H. and Ibrahim, J. G. (2001). Maximum likelihood methods for cure
rate models with missing covariates. Biometrics 57, 43-52.
[7] Donnelly, C. A., Ghanl, A. C., Leung, G. M., Hedley, A. J., Fraser, C., Rifey, S., Abu-Radded, L. J., Ho, L. M., Thach, T. Q., Chau, P., Chan, K. P., Lam, T. H., Tse, L. Y., Tsang, T., Llu, S. H., Kong, J. H. B., Lau, E. M. C., Ferguson, N. M., and Anderson, R. M. (2003). Epidemiological determinants of spread of causal agent of severe acute respiratory syndrome in Hong Knog. Lancet 361, 1761-1766.
[8] Efron, B. and Tibshirani, R. J. (1993). An Introduction to the Bootstrap. New York: Chapman & Hall.
[9] Farewell, V. T. (1982). The use of mixture models for the analysis of survival data with long term survivors. Biometrics 38, 1041-1046.
[10] Farewell, V. T. (1986). Mixture models in survival analysis: are they worth the risk? Can. J. Statist. 14, 257-256.
[11] Goldman, A. I. (1984). Survivorship analysis when cure is a possibility: A Monte Carlo study. Statistics in Medicine 3, 153-163.
[12] Greenhouse, J. B. and Wolfe, R. A. (1984). A competing risks derivation of a mixture model for the analysis of survival data. Communications in Statistics-Theory and Methods 13, 3133-3154.
[13] Kosorok, M., Lee, B., and Fine, J. (2003). Robust inference for proportional hazards univariate frailty regression models. To appear, Ann. statist.
[14] Kuk, A. Y. C. (1992). A semiparametric mixture model for the analysis of competing risks data. Australian Journal of Statistics 34, 169-180.
[15] Kuk, A. Y. C., and Chen, C. (1992). A mixture model combining logistic regression with proportional hazards regression. Biometrika 79, 531-541.
[16] Li, C.-S., Taylor, M. G., and Judy, P. S. (2001). Identifiability of cure models. Statistics & Probability Letters 54, 389-395.
[17] Lingappa, J. R., McDonald, L. C., Simone, P., and Parashar, U. D. (2004). Wresting SARS from uncertainty. Emerg Infect. Dis. URL: http://www.cdc.gov/ncidod/EID/vol10n02/03-1032.thm
[18] Lorentz, C. G. (1986). Bernstein Polynomials, Chelsea, New York.
[19] Murphy, S. A. (1994) Consistency in a proportional hazards
model incorporating a random effect. Ann. Statist., 22, 712-731.
[20] Murphy, S. A., Rossini, A. J. and van der Vaart, A. W. (1997)
Maximum likelihood estimation in the proportional odds model. J. Amer. Statist. Assoc., 92, 968-976.
[21] Parner, E. (1998) Asymptotic theory for the correlated gamma-frailty model. Ann. Statist., 26, 183-214.
[22] Peng, Y. (2003). Fitting semiparametric cure models. Computational statistics & data analysis 41, 481-490.
[23] Peng, Y., and Dear, K. B. G. (2000). A nonparametric mixture model for cure
rate estimation. Biometrics 56, 237-243.
[24] Rudin, W. (1976) Principles of mathematical analysis. 3ed. McGraw-Hill, New York.
[25] Sy, J. P., and Taylor, J. M. G. (2000). Estimation in a Cox proportional hazards cure model. Biometrics 56, 227-236.
[26] Taylor, J. M. G. (1995). Semi-parametric estimation in failure time mixture models, Biometrics 51, 899-907.
[27] Tsodikov, A. (1998). A proportional hazard model taking account of long-term survivors. Biometrics 54, 1508-1516.
[28] van der Vaart, A. W. and Wellner, J. A. (1996) Weak Convergence and Empirical Processes. Springer Verlag, New York.
[29] van der Vaart, A. W. (1998) Asymptotic Statistics. Cambridge University Press, Cambridge.
[30] Yamaguchi, K. (1992). Accelerated failure-time regression models with a regression model of surviving fraction: An application to the analysis of "permanent employment" in Japan. Journal of the American Statistical Association 87, 284-292.
指導教授 張憶壽、熊昭
(I-Shou Chang、Chao A. Hsiung)
審核日期 2004-7-2
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明