博碩士論文 87244005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:3.128.94.171
姓名 廖啟雯(Chi-Wen Liao)  查詢紙本館藏   畢業系所 地球物理研究所
論文名稱 機率式地震誘發山崩危害度分析–以國姓地區為例
(Probabilistic Hazard Analysis of Earthquake-Induced Landslides – an Example from KouHsing, Taiwan)
相關論文
★ 利用S波與尾波探求蘭陽平原局部場址效應★ 集集地震誘發之山崩
★ 以地表位移量推算921地震時車籠埔斷層之錯動參數★ 利用921地震序列之強地動資料對台灣強地動衰減模式與反應譜速估之研究
★ 1999年集集地震序列強地動峰值隨方位角變動及以偏極化分析輔助地震定位方法之研究★ 九二一集集大地震序列各地累積絕對速度值(CAV)之研究
★ 以反應譜比值法推求地震時結構物振動行為之研究★ 紅河斷裂帶地震活動以及東南亞地殼與上部地函構造之研究
★ 台灣地區地震危害度的不確定性分析與參數拆解★ 台灣小規模地震再發統計模式參數研究
★ 台灣ShakeMap震度之研究-以九二一集集地震序列為例★ 斷層錯動、地殼變位及強地動與地震災害相關性之研究: 以1935年及1999年台灣中部兩次地震為例
★ 使用震源機制逆推台灣地區應力分區狀況★ 利用傅氏振幅譜比法分析全台灣強震站的場址
★ 以Gamma Model對台灣餘震叢集現象之研究★ 台灣西南部GPS資造時間序列分析與地殼變形模式研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 傳統的 Newmark 位移分析模式是用來計算空間上的山崩機率分布,並未考慮時間因素對於地震誘發山崩機率的影響。本研究的目的是結合Newmark 位移法與機率式地震危害度分析方法,建立一套考慮時間機率的地震誘發山崩危害度分析模式。主要方法則是藉由機率式地震危害度分析計算特定再現期的愛氏震度危害度,並結合Newmark 位移山崩機率模式得到該再現期下的山崩機率分布,以及特定 Newmark 位移門檻值的地震誘發山崩年超越機率。
為了探討分析模式之可行性,本研究選擇國姓地區進行測試,首先以本研究所提出之反算方法,利用集集地震誘發山崩測繪之資料進行剪力強度參數的反算,獲得區域內各地層的推估強度,用以計算集集地震時的Newmark 位移分布,並與實際誘發山崩資料迴歸建立 Newmark山崩機率模式。同時利用地震危害度分析方法計算研究區域內特定再現期的愛氏震度危害度圖,即可配合上述 Newmark 山崩機率模式獲得該再現期下的 Newmark 位移及其地震誘發山崩機率分布圖。本研究採用之地震危害度分析模式可同時考慮區域震源(採截切指數模式)以及活斷層(特徵地震模式),並且使用本土化的愛氏震度衰減式及國外所用衰減式分別進行評估。
研究成果顯示結合機率式地震危害度分析方法與Newmark 位移法可提供傳統山崩潛感圖所無法反應的時間因素,並可進一步提供工程規劃單位及政府管理當局對於區域規劃的參考,使用者可以從不同再現期中自行選擇可以承受的風險,亦可設定一門檻值,利用地震危害度分析的成果評估其地震誘發山崩的超越機率。以實際地震誘發山崩來反算地層強度可以反應地層的差異性,有助於提升分析品質。經由比較後發現,愛氏震度衰減公式對於地震危害度分析的成果具有相當大的影響,在使用上亦須特別注意。
摘要(英) For a comprehensive hazard assessment of earthquake-induced landslides, it is important to consider temporal effects from regional seismicity and active faults. To include the time factor into landslide hazard analysis, probabilistic seismic hazard analysis (PSHA) can be utilized. In this study, we combined the results from probabilistic seismic hazard analysis with the Newmark’s model to establish a procedure for producing regional probabilistic earthquake-induced landslide hazard map.
The material properties of a slope used for calculating the factor of safety and critical acceleration were back-calculated from landslide inventory. To calculate the probabilities of different levels of seismic shaking in the time interval of interest, probabilistic seismic hazard analysis was conducted by using Arias intensity attenuation equation. The results were input into Newmark’s model to produce a probabilistic landslide hazard map. An example of this approach was applied to an area in central Taiwan and shows that the introduction of the time factor allows for the temporal evaluation of the earthquake-induced landslide hazard.
The proposed approach provides a temporal assessment of the earthquake-induced landslide hazard. Slope’s material properties, estimated from back-analysis, help to conduct a more objective and physical-based assessment.
關鍵字(中) ★ 地震誘發山崩
★ 地震危害度分析
關鍵字(英) ★ seismic hazard analysis
★ earthquake-induced landslide
論文目次 目 錄
提要.........................................................................i
目錄....................................................................... ii
圖目........................................................................iv
表目...................................................................... vii
第一章 緒論..................................................................1
1.1 研究動機與目的...........................................................1
1.2 研究方法及流程...........................................................2
第二章 文獻回顧..............................................................4
2.1 地震誘發山崩之研究.......................................................4
2.2 邊坡穩定分析理論.........................................................5
2.3 Newmark位移法簡介........................................................7
2.4 Newmark位移法之分析參數..................................................7
2.5 Newmark位移值之經驗公式.................................................12
2.6 Newmark位移分析法實例...................................................14
2.7 地震危害度分析在地震誘發山崩問題上的應用................................14
第三章 機率式地震誘發山崩分析模式...........................................22
3.1 地震危害度分析簡介......................................................23
3.2 地震危害度分析理論......................................................23
3.3 台灣地區的地震危害度分析模式............................................24
3.4 本土化愛氏震度衰減式....................................................25
3.5 地質材料參數反算........................................................27
3.6 地形放大效應............................................................28
3.7 機率式地震誘發山崩評估法................................................30
第四章 實例分析.............................................................47
4.1 集集地震及其誘發山崩之特性..............................................47
4.2 研究區域簡介............................................................48
4.3 研究區域內之地震誘發山崩................................................51
4.4 地震誘發山崩崩壞模式建立................................................53
4.5 地震誘發山崩之年超越機率計算............................................57
第五章 討論.................................................................91
5.1 機率式地震誘發山崩危害度分析之探討......................................91
5.2 Newmark門檻值的年超越機率...............................................91
5.3 愛氏震度衰減式的使用....................................................92
5.4 地質材料參數的給定......................................................93
第六章 結論.................................................................98
參考文獻...................................................................100
英文提要...................................................................108
圖 目
圖1-1 本研究之流程圖.........................................................3
圖2-1 Newmark位移法二次積分之示意圖.........................................17
圖2-2 坡度計算所用網格示意圖................................................17
圖2-3 現地量測土壤深度之分佈................................................17
圖2-4 現地量測剪力強度之分佈................................................18
圖2-5 參數適配度演算法示意圖................................................18
圖2-6 Newmark位移分析法流程.................................................19
圖2-7 Newmark位移值10cm的年超越機率值.......................................20
圖2-8 五十年內10%超越機率的Newmark位移值....................................20
圖2-9 超越特定門檻值的臨界加速度值搜尋法....................................21
圖2-10 50年內10%機率超過門檻位移值10cm的臨界加速度值........................21
圖3-1 地震危害度分析流程圖..................................................36
圖3-2 台灣地區淺層區域震源劃分圖............................................37
圖3-3 台灣地區深層區域震源劃分圖............................................38
圖3-4 台灣地區TSMIP強震觀測網測站地盤分類圖.................................39
圖3-5 愛氏震度衰減式所用之地震震央分佈......................................40
圖3-6 愛氏震度衰減式使用地震資料的距離與規模分佈情形........................40
圖3-7 愛氏震度衰減式與資料擬合情形..........................................41
圖3-8 愛氏震度衰減式資料殘差值與地震規模的分佈情形..........................42
圖3-9 愛氏震度衰減式資料殘差值與距離的分佈情形..............................42
圖3-10愛氏震度衰減式之比較..................................................43
圖3-11 本研究適配指數計算參數之示意圖.......................................44
圖3-12 本研究所規劃的參數反算流程...........................................44
圖3-13 日本Matsuzaki地區正規化尖峰地動加速度與高程之關係....................45
圖3-14 各頻率地震波放大效應與高程間的關係...................................45
圖3-15 地形因子示意圖.......................................................46
圖3-16 愛氏震度區間內計算超越特定門檻值機率之示意圖.........................46
圖4-1 集集地震震央位置、餘震分佈及地表破裂圖................................62
圖4-2 以趨勢面分析法建構之車籠埔斷層破裂面幾何形貌..........................63
圖4-3 趨勢面與地表交線及實際車籠埔斷層地表破裂位置示意圖....................63
圖4-4 集集地震誘發之山崩分佈圖..............................................64
圖4-5 崩塌位置之數量與面積統計圖............................................64
圖4-6 研究區範圍及周遭地形彩繪明暗圖........................................65
圖4-7 研究區域三維彩繪明暗圖................................................66
圖4-8 研究區域地質圖........................................................67
圖4-9 本研究所使用之衛星影像................................................68
圖4-10 本研究所使用之地震誘發山崩目錄.......................................69
圖4-11 地震誘發山崩在各地層中的分佈情形.....................................70
圖4-12 研究區域內各地層單元所佔面積.........................................71
圖4-13 研究區域各地層單元內的山崩面積.......................................71
圖4-14 各地層單元的崩壞比...................................................72
圖4-15 本研究所蒐集的集集地震主餘震震央及強震站分佈圖.......................72
圖4-16 以921集集地震主震所計算的愛氏震度等值線..............................73
圖4-17 各地震事件中,單一網格點遭受最大愛氏震度值所內插之愛氏震度等值圖.....73
圖4-18 比高因子圖層.........................................................74
圖4-19 經過地形修正之後的愛氏震度等值圖.....................................74
圖4-20 比高的山崩與非山崩區統計圖及崩壞比...................................75
圖4-21 修正前愛氏震度的山崩與非山崩區統計圖及崩壞比.........................75
圖4-22 修正後愛氏震度的山崩與非山崩區統計圖及崩壞比.........................75
圖4-23 各地質單元內的適配指數...............................................76
圖4-24 各地層單元中 Newmark 位移值與崩壞比關係圖符合Weibull分佈的參數組合...77
圖4-25 各地層單元中 Newmark 位移值與崩壞比關係圖符合Weibull分佈的參數組合(考慮
地形修正)...................................................................78
圖4-26 研究區域坡度分佈圖...................................................79
圖4-27 研究區域安全係數圖...................................................79
圖4-28 研究區域臨界加速度值分佈圖...........................................80
圖4-29 研究區域 Newmark 位移分佈圖..........................................80
圖4-30 Newmark 位移值與崩壞比之關係式.......................................81
圖4-31 集集地震狀況下之地震誘發山崩機率.....................................81
圖4-32 集集地震狀況下山崩機率與實際誘發山崩圖層之套疊.......................82
圖4-33 研究區域Newmark位移分佈圖 (考慮地形修正) ............................82
圖4-34 Newmark位移值與崩壞比之關係式(考慮地形修正)..........................83
圖4-35 集集地震狀況下之地震誘發山崩機率.....................................83
圖4-36 集集地震狀況下山崩機率與實際誘發山崩圖層之套疊.......................84
圖4-37 50年內10%超越機率之愛氏震度(本土化衰減式)............................84
圖4-38 50年內10%超越機率之愛氏震度(國外衰減式)..............................85
圖4-39 50年內2%超越機率之愛氏震度(本土化衰減式).............................85
圖4-40 50年內2%超越機率之愛氏震度(國外衰減式)...............................86
圖4-41 地震誘發山崩之年超越機率值(本土化衰減式) ............................86
圖4-42 地震誘發山崩之年超越機率值(國外衰減式) ..............................87
圖4-43 地震誘發山崩之年超越機率值(本土化衰減式,地形修正) ..................87
圖4-44 地震誘發山崩之年超越機率值(國外衰減式,地形修正) ....................88
圖4-45 超越10公分門檻值之年發生率(本土化衰減式) ............................88
圖4-46 超越15公分門檻值之年發生率(本土化衰減式) ............................89
圖4-47 超越10公分門檻值之年發生率(國外衰減式) ..............................89
圖4-48 超越15公分門檻值之年發生率(國外衰減式) ..............................90
圖5-1 與集集地震規模相當的地震誘發山崩潛感圖................................95
圖5-2 50年內10%超越機率愛氏震度製作之山崩潛感圖.............................95
圖5-3 50年內2%超越機率愛氏震度製作之山崩潛感圖..............................96
圖5-4 崩積層厚度之半變異圖及其擬合模式......................................96
圖5-5 土壤深度與邊坡曲率之關係..............................................97
表 目
表2-1 利用坡度給定崩塌深度對照表............................................16
表2-2 利用山崩潛感分級給定強度參數..........................................16
表2-3 各種岩性的平均內凝聚力及摩擦角........................................16
表3-1 台灣地區淺層區域震源參數一覽表........................................31
表3-2 台灣地區深層區域震源參數一覽表........................................32
表3-3 UBC 1997 地盤分類與台灣地盤分類比較表.................................32
表3-4 Travasarou 等人之愛氏震度衰減式參數列表...............................33
表3-5 Hwang等人之愛氏震度衰減式係數.........................................33
表3-6 愛氏震度衰減式迴歸使用之地震資料......................................34
表3-7 本研究所迴歸之愛氏震度衰減式係數列表..................................35
表4-1 本研究所使用之衛星影像列表............................................59
表4-2 研究區域內各地層之分佈面積、山崩面積及其崩壞比........................59
表4-3 集集地震主震及餘震資料表..............................................60
表4-4 各地層單元之最適參數組合..............................................60
表4-5 各地層單元之最適參數組合(考慮地形效應)................................61
參考文獻 Abramson, L. W., Lee, T. S., Sharma, S., and Boyce, G. M. 2002, Slope Stability and Stabilization Methods, John Wiley & Sons, Inc, 772 pp.
Aki, K. and Larner, K. L., 1970, Surface motion of a layered medium having an irregular interface due to incident plane SH-waves, Journal of Geophysical Research, 75, 1921-1941.
Ambraseys, N. and Menu, J. M., 1988, Earthquake-induced ground displacements, Earthquake Engineering and Structural Dynamics, 16, 985-1006.
Ambraseys, N. and Srbulov M., 1995. Earthquake induced displacements of slopes. Soil Dynamics and Earthquake Engineering, 14, 59-71.
Arias, A., 1970, A Measure of Earthquake Intensity, R.J. Hansen, ed. Seismic Design for Nuclear Power Plants, MIT Press, Cambridge, Massachusetts, 438-483.
Ashford, S. A., Sitar, N. J., Lysmer, and Deng, N., 1997, Topographic effects on the seismic response of steep slopes, Bull. Seism. Soc. Am. 87, 701-709.
Ashford, S. A., Sitar, N., Lysmer, J., and Deng, N., 1997, Topographic effects on the seismic response of steep slopes, Bull. Seism. Soc. Am. 87, 701-709.
Bard, P. Y., 1982, Diffracted waves and displacement field over two-dimensional elevated Topographies, Journal of Royal Astronomy Society, 71, 731-760.
Bender, B., 1984, Incorporating acceleration variability into seismic hazard analysis, Bull. Seism. Soc. Am., 74, 1451-1462.
Boore, D. M., 1972, Finite-difference methods for seismic wave propagation in heterogeneous materials. In: BOLT, B.A. (ed), Methods of computational physics, 2. New York: Academic Press.
Bouchon, M., 1973, Effect of topography on surface motions, Bull. Seism. Soc. Am., 63(3), 615-632.
Burton A., Arkell, T. J., and Bathrust, J. C., 1998, Field variability of landslide model parameters, Env. Geol., 35, 2-3, 100-114.
Campbell, K. W., 1981, Near-source attenuation of peak horizontal acceleration, Bull. Seism. Soc. Am., 71, 2039-2070.
Cornell, C. A., 1968, Engineering seismic risk analysis, Bull. Seism. Soc. Am., 58, 1583-1606.
Crosta, G. B., and Frattini, P., 2003, Distributed modeling of shallow landslides triggered by intense rainfall, Natural Hazards and Earth System Sciences, 3, 81-93.
Del Gaudio, V., Pierri, P., and Wasowski, J., 2003, An Approach to Time-Probabilistic Evaluation of Seismically Induced Landslide Hazard, Bull. Seism. Soc. Am., 93, 2, 557-569.
Deng, N., 1991, Two-dimensional site response analyses, Ph.D. Dissertation, University of California at Berkeley, Berkeley, California.
EERI Committee on Seismic Risk, 1989, The basics of seismic risk analysis, Earthquake Spectra, 5, 675-702.
Geli, L., Bard, P. Y., and Jullien, B., 1988, The effect of topography on earthquake ground motion: a review and new results. Bulletin of the Seismological Society of America, 78(1), 42-63.
Guimara˜es, R. F., Montgomery, D. R., Greenberg, H. M., Fernandes, N. F., Gomes, R. A. T., and Ju´nior, O. A. C., 2003, Parameterization of soil properties for a model of topographic controls on shallow landsliding: application to Rio de Janeiro, Engineering Geology, 69, 99-108.
Harp, E. L., and Jibson, R. W., 1996, Landslides triggered by the 1994 Northridge, California, Earthquake, Bull. Seis. Soc. Am., 86, 1b, 319-332.
Heimsath, A. M., Dietrich, W. E., Nishiizumi, K., and Finkel, R. C., 1997, The soil production function and landscape equilibrium, Nature, 358-361.
http://www.ce.berkeley.edu/~khazai/Research/Report/index.html
Hwang, H., Lin, C. K., Yeh, Y. T., Cheng, S. N., and Chen, K. C., 2004, Attenuation relations of Arias intensity based on the Chi-Chi Taiwan earthquake data, Soil Dyn. Earthq. Eng., 24, 509-517.
ICBO (International Conference of Building Officials), 1997. Uniform Building Code, Whittier, California., 492 pp.
Iida, T., and Okunishi, K., 1983, Development of hillslopes due to landslides, Extreme land forming events, 67-78.
Jibson, R. W., 1993, Predicting Earthquake-Induced Landslide Displacements UsingNewmark’s Sliding Block Analysis: Transportation Research Board Record 1411, 9-17.
Jibson, R. W., and Keefer, D. K., 1988, Landslides Triggered by Earthquake in the Central Missippi Valley, Tennessee and Kentucky, USGS Professional Paper 1336-c.
Jibson, R. W., Harp, E. L., and Michael, J. A., 1998, A method for producing digital probabilistic seismic landslide hazard maps: an example from the Los Angeles, California Area, USGS Open-File Rep. 98-113.
Jibson, R. W., Harp, E. L., and Michael, J. A., 2000, A Method for Producing Digital Probabilistic Seismic Landslide Hazard Maps, Engineering Geology, 58, 271-289.
Kayen, R. E., and Mitchell, J. K., 1997, Assessment of liquefaction potential during earthquakes by Arias Intensity, Journal of Geotechnical and Geoenvironmental Engineering (ASCE), 123, 1162-1174.
Keefer, D. K., 1984, Landslides Caused by Earthquakes, Geological Society of America Bulletin, 95, 406-421.
Keefer, D. K., 2000, Statistical Analysis of an Earthquake-Induced Landslide Distribution - the 1989 Loma Prieta, California Event, Engineering Geology, 58, 231-249.
Keefer, D. K., and Wilson, R. C., 1989, Predicting Earthquake-induced Landslides with Emphasis on Arid and Semi-arid Environment: Riverside, California, Inland Geological Survey, 2, 118-149.
Khazai, B., and Sitar, N., 2000, Landslides in Native Ground: A GIS-Based Approach to Regional Seismic Stability Slope Stability Assessment, http://www2.ced.berkeley.edu:8002/index2.html.
Kiureghian, A. D., and Ang, A. H-S., 1977, A fault-rupture model for seismic risk analysis, Bull. Seism. Soc. Am., 67, 1173-1194.
Kulhawy, F. H., 1975, Stress deformation properties of rock and rock discontinuities, Engineering Geology, 9, 327-350.
Lee, C. T., Cheng, C. T., Liao, C. W., and Tsai, Y. B., 2001, Site Classification of Taiwan Free-field Strong-Motion Stations, Bull. Seism. Soc. Am., 91, 1283-1297.
Luzi, L., 2000, A correlation between slope failures and accelerometric parameters: the 26 September 1997 earthquake (Umbria-Marche, Italy), Earthquake Engineering, 20, 301-313.
Luzi, L., and Pergalani, F., 2000, A correlation between slope failures and accelerometric parameters:the 26 September 1997 earthquake(Umbria–Marche, Italy), Earthquake Engineering, 20, 301-313.
Luzi, L., Pergalani, F., and Terlien, M. T. J., 2000, Slope vulnerability to earthquakes at subregional scale, using probabilistic techniques and geographic information systems, Engineering Geology, 58, 313-336.
Miles, S. B., and Keefer, D. K., 1999, Comparison of Permanent Displacement Models for Spatial Seismic Landslide Hazard Analysis: Case Study of the Oakland East Quadrangle, California, U.S. Geological Survey Open-file Report, 99-137.
Miles, S. B., and Keefer, D. K., 2000, Evaluation of seismic slope-performance models using a regional case study, Environmental & Engineering Geoscience, 11, 1, 25-39.
Miles, S. B., and Keefer, D. K., 2001a, Seismic Landslide Hazard for the City of Berkeley, CA, U.S. Geological Survey Miscellaneous Field Studies Map MF 01-2379,
http://geopubs.wr.usgs.gov/map-mf/mf2378.
Miles, S. B., and Keefer, D. K., 2001b, Seismic Landslide Hazard for the Cities of Oakland and Piedmont, CA, U.S. Geological Survey Miscellaneous Field Studies Map MF 01-2379,
http://geopubs.wr.usgs.gov/map-mf/mf2379.
Miles, S. B., Ho, C. L., 1999, Rigorous landslide hazard zonation using Newmark's method and stochastic ground motion simulation, Soil Dyn. Earthq. Eng., 18, 305-323.
National Research Council 1988, Probabilistic Seismic Hazard Analysis, National Academic Press, Washington, D.C., 97.
Newmark1965, Effects of earthquakes on dams and embankments, Geotechnique 15, 139–160.
Paciello, A, Rinaldis, D, and Romeo, R, 2000, Incorporating ground motion parameters related to earthquake damage into seismic hazard analysis. Proceedings of the Sixth International Conference on Seismic Zonation: Managing Earthquake Risk in the 21st Century, Earthquake Engineering Research Institute, Oakland, CA, 2000.
Radbruch, D. H., 1969, Areal engineering geology of the Oakland East quadrangle: U.S. Geological Survey Map GQ-769.
Refice, A., and Capolongo, D., 2002, Probabilistic modeling of uncertainties in earthquake-induced landslide hazard assessment, Computer and Geosciences, 28, 735-749.
Romeo, R., 2000, Seismically induced landslide displacements: a predictive model, Engineering Geology, 58, 3-4, 337-351.
Sanchez-Sesma, F. J., Bravo, M. A., and Herrera, J., 1985, Surface motion of topographical irregularities for incident P, SV, Rayleigh waves, Bulletin of the Seismological Society of America, 75, 263-269.
Sanchez-Sesma, F., Herrera, I., and Aviles, J., 1982, A boundary method for elastic wave diffraction: application to scattering SH waves by surface irregularities, Bull. Seism. Soc. Am. 72, 473-490.
Soeters, R., and Westen, V., 1996, Slope instability recognition, analysis, and zonation. In: Turner, A.K., Schuster, R.L., Landslides: Investigation and Mitigation. Special Report 247. Transportation Research Board, National Research Council, National Academy Press, Washington, DC, 129-177.
Sonmez, H., Ulusay, R., and Gokceoglu, C., 1998, A Pratical procedure for the back analysis of slope failures in closely jointed rock masses, Int. J. Rock. Mech. Min. Sci., 35, 2, 219-233.
Tamura, T., 1978, Study on the extension of area with surface failure and landslide caused by earthquake, Geographical review of Japan, 51, 662-672, (in Japanese).
Travasarou, T., Bray, J. D., and Abrahamson, N. A., 2003, Empirical Attenuation Relationship for Arias Intensity, Earthquake Engng Struct. Dyn., 32, 1133-1155.
Travasarou, T., Bray, J. D., and Abrahamson, N. A., 2003, Empirical attenuation relationship for Arias Intensity, Earthquake Engng. Struct. Dyn, 32, 1133-1155.
Varnes, D. J., and IAEG Commision on Landslides and other Mass-Movements, 1984, Landslide hazard zonation: a review of principles and practice, UNESCO Press, Paris, 63.
Weibull, W., 1939, In: Statistical Theory of the Strength of Materials. Ingenioersvetenskaps-akademien, Handlingar, Stockholm, 151.
Wieczorek, G. F., Wilson, R. C., and Harp, E. L., 1985, Map showing slope stability during earthquake of San Mateo County, California, US Gelogical Survey Miscellaneous Geologic Investigations Map 1-1257E.
Wilson, R. C., and Keefer, D. K., 1983, Dynamic analysis of a slope failure from the 6 August 1979 Coyote Lake, California, Earthquake, Bull. Seis. Soc. Am., 73, 3, 863-877.
Wilson, R. C., and Keefer, D. K., 1985, Predicting areal limits of earthquake-induced landsliding, in Ziony, J.I., editor, Evaluating earthquake hazards in the Los Angeles region--an earth-science perspective: U.S. Geological Survey Professional Paper 1360, 317-345.
Wong, H. L., 1982, Effect of surface topography on the diffraction of P, SV and Rayleigh waves, Bull. Seis. Soc. Am., 72, 1167-1183.
Yamagami, T., and Ueta, Y., 1991, Back analysis of strength parameters for landslide control works, Landslides, Rotterdam, 619-624.
Yegian, M. K., Marciano, E., and Ghahraman, V. G., 1991, Earthquake-induced permanent deformations: probabilistic approach, Journal of Geotechnical Engineering, ASCE, 17, 1, 35-50.
Youngs, R. R., and Coppersmith, K. J., 1985, Implications of fault slip rates and earthquake recurrence models to probabilistic seismic hazard estimates, Bull. Seism. Soc. Am., 75, 939-964.
Zhou, G., T., Esaki, Y., Mitani, M., Xie, and Mori, J., 2003, Spatial probabilistic modeling of slope failure using integrated GIS Monte Carlo simulation approach, Engineering Geology, 68, 373-386.
工業技術研究院能源與資源所,2000. 崩塌地調查與治理規劃,行政院農業委員會水土保持局,30頁。
王士榮,2002. 以位移法分析自然邊坡在地震力作用下的平面式破壞,國立成功大學資源工程研究所碩士論文,98頁。
朱聖心,2001. 應用地理資訊系統製作地震及降雨所引致之山崩危險圖,國立臺灣大學土木工程學研究所碩士論文,169頁。
池谷浩,1995. 土石流災害調查法,山海堂,第138頁,196頁。
呂岡侃,2002. 南投縣九九峰土石流發生區之地形特徵,國立台灣大學地理環境資源所,碩士論文。
呂政諭,2001. 地震與颱風作用下阿里山地區公路邊坡崩壞特性之研究,國立成功大學土木工程研究所碩士論文,94頁。
李彪、施國欽,1995. 台灣地區變質岩單壓強度初步研究,第六屆大地工程學術研究討論會論文集,655-664。
李錫堤,1991. 地震危害機率分析方法之檢討,工程地質技術應用研討會Ⅲ論文集,第5-1至5-19頁。
李錫堤,2003. 山崩調查與危險度評估-山崩潛感分析之研究(1/3),經濟部中央地質調查所報告第92-11號,149頁。
李馨慈,2004. 應用累積位移法於地震引起之山崩潛勢分析,國立成功大學資源工程學系碩士論文,103頁。
林柏伸,2002. 台灣地區東北部地區隱沒帶強地動衰減式之研究,國立中央大學應用地質研究所碩士論文,135頁。
林柏伸,李錫堤,2004. 台灣地區Arias Intensity衰減式的初步研究,2004年第十屆台灣地區地球物理學術研討會論文集,第99頁。
林柏伸,鄭錦桐,李錫堤,2002. 台灣地區隱沒帶震源與地殼震源強地動反應譜衰減式,第九屆台灣地區地球物理研討會暨九十年度中國地球物理學會年會論文集,24-31。
施國欽、李彪 1994. 台灣地區沈積岩單壓強度初步研究,1994年岩盤工程研討會論文集,219-228。
洪如江,林美聆,陳天健,王國隆,2000. 921集集大地震相關的坡地災害、坡地破壞特性、與案例分析,地工技術,81期,17-32。
許文科,2000. 整合性多目標地震風險評估系統之建立,國立中央大學土木工程學研究所博士論文,175頁。
許琦、蕭達鴻、徐豐裕、歐泰林、葉雅芸,2000. 921集集大地震崩塌地崩塌前之地形特徵,921集集大地震週年紀念學術研討會論文集。
許煜煌,2002. 以不安定指數法進行地震引致坡地破壞模式分析,國立臺灣大學土木工程學研究所碩士論文,153頁。
陳嬑璇,2002. 溪頭地區山崩潛感圖製作研究,國立臺灣大學土木工程學研究所碩士論文,141頁。
彭文飛,2001. 以位移法分析自然邊坡在地震時之破壞行為的初步探討,國立成功大學資源工程研究所碩士論文,200頁。
黃臺豐,1999. 瑞里地震誘發之山崩,國立中央大學應用地質研究所碩士論文,79頁。
廖軒吾,2000. 集集地震誘發之山崩,國立中央大學應用地質研究所碩士論文,共90頁。
歐陽元淳,2003. 水庫集水區土壤沖蝕之研究-以石門、翡翠水庫為例,國立台灣大學地理環境資源所,碩士論文,94頁。
鄭傑銘,2003. 應用 GIS 進行豪雨及地震引致山崩之潛感性分析,國立台灣大學土木工程研究所碩士論文,136頁。
鄭錦桐,1997. 台灣地震危害度分析-使用新的震源分區,國立中央大學地球物理研究所碩士論文,131頁。
鄭錦桐,2002. 台灣地區地震危害度的不確定性分析及參數拆解,國立中央大學地球物理研究所博士論文,227頁。
鄭錦桐,李錫堤,蔡義本,1998. 利用地理資訊系統輔助地震危害度分析,地工技術,69期, 41-50。
鄭錦桐、李錫堤、蔡義本,2000.「集集大地震斷層破裂面幾何形貌及強地動震動衰減模式」, 中國地質學會九十九年年會暨學術研討會論文集,21-23。
羅偉、吳樂群、陳華玟,1999. 五萬分之一台灣地質圖說明書(國姓圖幅),經濟部中央地質調查所,71頁。
指導教授 蔡義本、李錫堤
(Yi-Ben Tsai、Chyi-Tyi Lee)
審核日期 2005-1-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明