博碩士論文 87246004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:22 、訪客IP:3.141.8.247
姓名 張秀峰(Hsiu-Fong Chang)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 共路徑外差共焦顯微鏡之原理、特性及其應用
(The Principle, Feature and Applications of Common-path Heterodyne Confocal Microscope)
相關論文
★ 雙頻雷射共光程外差干涉橢圓儀★ 常態偏振自泵激相位共軛效應及具高『常態偏振/非常態偏振』比的光折變自泵激相位共軛器
★ 成對表面電漿波生物感知器應用在去氧核糖核酸及微型核糖核酸 雜交反應檢測★ 成對表面電漿波生物感測器之研究及其在生醫上的應用
★ 影像式外差干涉術之建立★ 鈦酸鋇晶體應用於光訊號連結及自/互泵激相位共軛之研究
★ 微循環顯微影像之擷取與分析★ 光在各向同性與各向異性介質界面上反射之情形
★ 液晶投影顯示器中照明系統的照度量測與分析★ 即時微循環顯微取像裝置的設計
★ 發光二極體光強度分佈之量測及利用類神經網路之分析★ 單光束架構下以鈮酸鋰晶體修正受擾動破壞的影像
★ 高效率液晶繞射光學元件★ 雷射都卜勒測速系統之研究
★ 光在各向異性介質與各向同性介質界面上的反射和透射現象之討論★ 亂相編碼之體積全像相位鑰匙的重製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 共焦顯微術是一種具有高空間解析度和光學切片能力的重要技術。本研究結合雷射掃描共焦顯微鏡與外差干涉技術建構一套可以有效降低散射效應及球面像差(因樣本折射率不匹配所產生)的三維成像系統。
本論文所提出的共路徑外差干涉共焦顯微鏡是以同時產生雙頻率及正交線偏振光的Zeeman He-Ne 雷射作為系統的光源,此兩種不同頻率的偏振光沿著同一方向傳播,就是本文中所稱的共路徑光子對(photon-pair)。在本研究中,我們量測散射光子對在此系統成像面散射角度分佈的情形,實驗結果證實本共焦顯微鏡在高散射介質中的成像過程中具有過濾多次散射光子及提高影像訊雜比(signal-to-noise ratio, SNR)的能力。同時我們也探討了本顯微鏡在散射介質中的縱向解析度,並對一個浸泡在散射介質中的物體進行取像。另外,對於一般共焦顯微鏡以及本論文所提出的共路徑外差干涉共焦顯微鏡因受觀察樣本與浸潤介質的折射率不匹配所引起的球面像差對軸向解析度的影響,我們提出一些分析並實際以實驗量測之。最後,比較由本論文所提出之顯微鏡和一般雷射掃描共焦顯微鏡所量得的結果,我們可以說本共焦顯微鏡確實比一般共焦顯微鏡優越。
我們認為本論文所提出的共焦顯微鏡之所以比一般共焦顯微鏡優越,乃是由於它同時具備空間濾波閘截(spatial-filtering gating)、極化閘截(polarization gating)、空間同調閘截(spatial-coherence gating)以及共路徑的光子對(photon-pair)等特性。因此,在散射介質中它可以把多次散射光子過濾掉,同時篩選出帶有原來影像資訊的直進光子與弱散射光子。並且能有效的收集弱散射光子而提高系統的訊雜比,進而取得物體在散射介質中的影像,同時也可以應付光學厚度(optical thickness)較大的散射介質。除此之外,由於光子對的共路徑特性使得這些光子對透過光學外差干涉方法所產生的訊號,已相互抵銷因樣本折射率不匹配所產生的波前偏差(wave aberration),因此減少了成像系統的球面像差。
摘要(英) Confocal microscopy is a powerful technique because of its high resolution and its abilities of optical sectioning. This research incorporates the optical heterodyne technique in laser scanning confocal microscope (LSCM) to build a three-dimensional imaging system which effectively reduces the scattering effect as well as spherical aberration induced by refractive index mismatch.
The common path heterodyne confocal microscope proposed in this research employs a Zeeman He-Ne laser, which emits two orthogonal linear polarized waves of two frequencies simultaneously. These two beams of light travel a common path in the whole setup. The heterodyne signals generated by these two beams after they pass through the scattering media of different concentrations have been measured. The experimental results demonstrate that our setup can filter out multiple scattered photons and increase the ability for image sectioning in the scattering medium. We have also investigated the axial resolution of our setup at different concentrations in the scattering medium. The images have been taken for specimens immersed in the scattered medium. Furthermore, we have analyzed the influence of spherical aberration on the resolution induced by refractive index mismatch between specimen and immersion medium. Experiments have been performed to measure these influences quantitatively. Finally, the performance of our proposed microscope and that of the conventional laser scanning confocal microscope is compared.
Our experimental results show that our proposed microscope possesses good ability of spatial-filtering gating, polarization gating, spatial-coherence gating. Therefore, our proposed microscope is able to reject the multiple scattered photons and retain the ballistic photons and weak scattering photons which contain the original image information. The effective collection of the weak-scattered photons increases the SNR of the system, and then acquires the image of the specimen in the scattering medium. As a result, the microscope can look in to a medium of larger optical thickness. Furthermore, because of the common-path feature of the photon pairs, they suffer the same kinds of wave aberration induced by refractive index mismatch, and thus they can cancel each other. The proposed microscope therefore has the ability to reduce the spherical aberration induced by refractive index mismatch.
關鍵字(中) ★ 外差干涉
★ 散射
★ 折射率
★ 共焦顯微術
★ 球面像差
關鍵字(英) ★ heterodyne
★ scattering
★ confocal microscopy
★ spherical aberration
★ refractive index
論文目次 Abstract in Chinese....................................Ⅰ
Abstract in English....................................Ⅲ
Acknowledgements.......................................Ⅴ
Contents...............................................Ⅶ
List of Figures........................................Ⅸ
Abbreviation..........................................XI
Chapter 1 Introduction...................................1
1-1 Background and Development of Confocal Microscopy.....1
1-2 Motivation and Objective............................. 6
1-3 Review of Related Researches.........................12
1-3-1 Review of Works Regarding Imaging in Scattering Medium...................................................12
1-3-2 Review of Works Regarding Spherical Aberration Caused by Refractive Index Mismatch......................14
1-4 Structure of the Dissertation........................16
References............................................ ..18
Chapter 2 Angular Distribution of Polarized Photon-pairs in a Scattering Medium with a Zeeman Laser Scanning Confocal Microscope......................................23
2-1 Background and Motivation............................23
2-2 Experimental Setup...................................26
2-3 Experimental Result of the Angular (Lateral) Distribution of the Heterodyne Signal....................26
2-4 Axial Resolution.....................................29
2-5 Comparison of Our Results With That of Other Investigators............................................32
2-6 A Tomographic Image..................................34
References...............................................44
Chapter 3 Spherical Aberration Cancellation in Polarized Photon-pairs Confocal Laser Scanning Microscope..........46
3-1 Background of the Problem............................46
3-2 Imaging Formation of PLSCM...........................51
3-3 Experimental Setup and Results.......................54
References...............................................64
Chapter 4 Conclusions and Future Works..................68
4-1 Discussion and Conclusions...........................68
4-2 Future Works.........................................72
References...............................................74
參考文獻 Chapter 1
〔1〕 G. Binning and H. Rohrer, “Surface studies by scanning tunneling microscope,” Phys. Rev. Lett. 49, 57 (1982).
〔2〕 G. Binning, C. F. Quate, and Ch. Gerber, “Atomic force microscope,” Phys. Rev. Lett. 56, 930 (1986).
〔3〕 M. Minsky, U. S. patent 3013467, Microscopy Apparatus, Dec. 19, 1961 (Filed Nov. 7, 1957).
〔4〕 M. Minsky, “Memoir on inventing the confocal scanning microscopy,” Scanning 10,128-138 (1988).
〔5〕 C. J. R. Sheppard, and Choudhury, “Image formation in the scanning microscope,” Optica Acta 24, 1051 (1977).
〔6〕 P. Davidovits, and M. D. Egger, “Scanning laser microscope,” Nature 223, 831 (1969).
〔7〕 C. J. Koster, “Scanning mirror microscope with optical sectioning characteristics: applications in ophthalmology,” Appl. Opt. 19, 1749-1757 (1980).
〔8〕 C. J. Brakenhoff, P. Blom, and P. Barends, “Confocal scanning light microscopy with high aperture immersion lenses,” J. Micros. 117, 219-232 (1979).
〔9〕 T. Wilson and C. J. R. Sheppard, “Theory and practice of scanning optical microscopy,” London, Academic Press (1984).
〔10〕 C. J. R. Sheppard, Scanning optical microscopy, in advance in Optical and Electron Microscopy, vol. 10, eds. R.Barer and V. E. Cosslett (Academic, London, 1987), pp. 1-98.
〔11〕 T. Wilson, Confocal microscopy, Academic, London, (1990).
〔12〕 M. Gu, Three dimensional confocal microscopy, World Scientific, Singapore, (1996).
〔13〕 J. B. Pawley, Handbook of Biological Confocal Microscopy, Plenum Press, New York, (1995).
〔14〕 C. J. R. Sheppard and D. M. Shotton, Confocal laser scanning microscopy, Information, Oxon, (1997).
〔15〕 W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73-76 (1990).
〔16〕 M. Gu, C. J. R. Sheppard, and X. Gan, Image information in a fiber- optic confocal scanning microscope, J. Opt. Soc. Am. A 8, 1755-1761 (1991).
〔17〕 T. Wilson, “Fluorescence imaging modes in fiber-optic based confocal scanning microscope,” Opt. Commun. 96, 133-141 (1993).
〔18〕 S. Hell and E. H. K. Stelzer, “Properties of a 4Pi confocal fluorescence microscope,” J. Opt. Soc. Am. A 9, 2159 (1992).
〔19〕 T. Nielsen, M. Fricke, D. Hellweg, and P. Andresen, “High efficiency beam splitter for multifocal multiphoton microscopy,” J. Micros. 201, 368-376 (2001).
〔20〕 C. H. Lee and J. Wang, “Noninterferometric differential confocal microscopy with 2-nm depth resolution,” Opt. Commun. 135,233 (1997).
〔21〕 L. C. Peng, C. Chou, C.W. Lyu, and J. C. Hsieh, “Zeeman laser-scanning confocal microscopy in turbid media,” Opt. Lett. 26, 349-351 (2001).
〔22〕 C. J. R. Sheppard, M. Gu, K. Brain, and H. Zhou, “Influence of spherical aberration on axial imaging of confocal reflection microscopy,” Appl. Opt. 33, 616-624 (1994).
〔23〕 M. J. Booth and T. Wilson, “Strategies for the compensation of specimen-induced spherical aberration in confocal microscopy of skin,” J. Micros. 200, 68-74 (2000).
〔24〕 S. P. Morgan, M. P. Khong, and M. G. “Somekh, Effect of polarization state and scatterer concentration on optical imaging through scattering media,” Appl. Opt. 36, 1560-1565 (1999).
〔25〕 S. P. Morgan and M. E. Ridgway, “Polarization properties of light backscattered from a two layer scattering medium,” Opt. Express 7, 395-402 (2000).
〔26〕 V. S. Sanjaran, K. Schonenberger, J. T. Walsh,Jr., and D. J. Maitland, “polarization discrimination of coherently propagating light in turbid media,” Appl. Opt. 38, 4252-4261 (1999).
〔27〕 V. S. Sanjaran, M. J. Everett, D. J. Maitland, and J. T. Walsh,Jr., “Comparison of polarized-light propagation in biological tissue and phantoms,” Opt. Lett. 26, 1044-1046 (1999).
〔28〕 T. Wilson and A. R. Carlini, “Size of the detector in confocal imaging system,” Opt. Lett. 12, 227-229 (1987).
〔29〕 M. Gu, T. Tannous, and C. J. R. Sheppard, “Effect of an annular pupil on confocal imaging through highly scattering media,” Opt. Lett. 21, 312-314 (1996).
〔30〕 J. M. Schmitt, A. Knuttel, and M. Yadlowsky, “Confocal microscopy in turbib media,” J. Opt. Soc. Am. A 11, 2226-2235 (1994).
〔31〕 X. Gan, S. P. Schilders, and M. Gu, “Imaging enhancement through turbid media under a microscope by use of polarization gating method,” J. Opt. Soc. Am. A 16, 2177-2184 (1999).
〔32〕 J. A. Izatt, M. R. Hee, and G. M. Owen, “Optical coherence microscopy in scattering media,” Opt. Lett. 19, 590-592 (1994).
〔33〕 M. Kempe, W. Rudolph, and E. Welsch, “Comparative study of confocal and heterodyne microscopy for imaging through scattering media,” J. Opt. Soc. Am. A 13, 46-52 (1996).
〔34〕 G. E. Anderson, F. Liu, and R. R. Alfano, “Microscope imaging through highly scattering media,” Opt. Lett. 19, 981-983 (1994).
〔35〕 M. Kempe, A. Z. Genack, W. Rudolph, and P. Dorn, “Ballistic and diffuse light detection in confocal and heterodyne imaging systems,” J. Opt. Soc. Am. A 14, 216-223 (1996).
〔36〕 D. Bird and M. Gu, “Compact two-photon fluorescence microscope based on a single-mode fiber coupler,” Opt. Lett. 27, 1031-1033 (2001).
〔37〕 T. D. Wang, M. J. Mandella, C. H. Contag, and G. S. Kino, “Dual-axis confocal microscope for high-resolution in vivo imaging,” Opt. Lett. 28, 414-416 (2003).
〔38〕 T. D. Wang, C. H. Contag, M. J. Mandella, N. Y. Chen, and G. S. Kino, “Dual-axis confocal microscope with post-objective scanning and low-coherence heterodyne detection,” Opt. Lett. 28, 1915-1917 (2001).
〔39〕 S. W. Hell and E. H. J. Stelzer, “Aberration in confocal fluorescence microscopy,” Handbook of Biological Confocal Microscopy, (ed. by J. B. Pawley), pp.347-354, Plenum Press, New York, (1995).
〔40〕 C. J. R. Sheppard and C. J. Cogswell, “Effet of aberrating layers and tube length on confocal imaging property,” Optik 87, 34-38 (1991).
〔41〕 C. J. R. Sheppard and M. Gu, “Aberration compensation in confocal microscopy,” Appl. Opt. 30, 3563-3568 (1991).
〔42〕 C. J. R. Sheppard and M. Gu, “Axial imaging through an aberrating layer of water in confocal microscopy,” Opt. Commun. 88, 180-190 (1992).
〔43〕 C. J. R. Sheppard, M. Gu, K. Brain, and H. Zhou, “Influence of spherical aberration on axial imaging of confocal reflection microscopy,” Appl. Opt. 33, 616-624 (1994).
〔44〕 D. S. Wan, M. Rajadhyaksha, and R. H. Webb, “Analysis of spherical aberration of a water immersion objective: application to specimen with refractive indices 1.33-1.40,” J. Micros. 197, 274-284 (2000).
Chapter 2
〔1〕 G. E. Anderson, F. Liu, and R. R. Alfano, “Microscope imaging through highly scattering media,” Opt. Lett. 19, 981-983 (1994).
〔2〕 C. Chou, L. C. Peng, Y. H. Chou, Y. H. Tang, C. Y. Han, and C.W. Lyu, “Polarized optical coherence imaging in turbid media by use of a Zeeman laser,” Opt. Lett. 25, 1517-1519 (2000).
〔3〕 M. Kempe, A. Z. Genack, W. Rudolph, and P. Dorn, “Ballistic and diffuse light detection in confocal and heterodyne imaging systems,” J. Opt. Soc. Am. A 14, 216-223 (1997).
〔4〕 M. Kempe and W. Rudolph, “Comparative study of confocal and heterodyne microscopy for imaging through scattering media,” J. Opt. Soc. Am. 13, 46-52 (1996).
〔5〕 M. Kempe and W. Rudolph, “Scanning microscopy through thick layers based on linear correlation,” Opt. Lett. 19, 1919-1921 (1994).
〔6〕 J. A. Izatt, M. R. Hee, and G. M. Owen, “Optical coherence microscopy in scattering media,” Opt. Lett. 19, 590-592 (1994).
〔7〕 C. J. R. Sheppard, M. Roy, and M. G. Sharma, “Image formation in low-coherence and confocal interference microscopes,” Appl. Opt. 43, 1493-1502 (2004).
〔8〕 M. Gu and C. J. R. Sheppard, “Effects of defocus and primary spherical aberration on images of a straight edge in confocal microscopy,” Appl. Opt. 33, 625-630 (1994).
〔9〕 A. Wax, C. Yang, R. R. Dasari, and M. S. Feld, “Measurement of angular distributions by use of low-coherence interferometry for light-scattering spectroscopy,” Opt. Lett. 26, 322-324 (2001).
〔10〕 L. C. Peng, C. Chou, C. W. Lyu, and J. C. Hsieh, “Zeeman laser-scanning confocal microscopy in turbid media,” Opt. Lett. 26, 349-351 (2001).
〔11〕 J. M. Schmitt, A. Knuttel, and M. Yadlowsty, “Confocal microscopy in turbid media,” J. Opt. Soc. Am. A 11, 2226-2235 (1994).
〔12〕 C. J. R. Sheppard, M. Gu, K. Brain, and H. Zhou, “Influence of spherical aberration on axial imaging of confocal microscopy,” Appl. Opt. 33, 616-624 (1994).
〔13〕 T. Wilson and A. R. Garlini, “Size of the detector in confocal imaging systems” Opt. Lett. 12, 227-229 (1987).
Chapter 3
〔1〕 S. W. Hell and E. H. K. Stelaer, "Lens aberration in confocal fluorescence microscopy," Handbook of Biological Confocal Microscopy. (ed. By J. Pawley), pp. 347-354. Plenum Press, New York, (1995).
〔2〕 C. J. R. Sheppard and D. M. Shotton, Confocal Laser Scanning Microscopy, p. 29-39. Springer, New York, (1997).
〔3〕 I. Escobar, G. Saavedra, M. Martínez-Corral, and J. Lancis, "Reduction of the spherical aberration effect in high-numerical-aperture optical scanning instruments," J. Opt. Soc. Am. A 23, 3150-3155 (2006).
〔4〕 J. M. Schmitt, A. Knuttel, and M. Yadlowsky, "Confocal microscopy in turbid media," J. Opt. Soc. Am. A 11, 2226-2235 (1994).
〔5〕 H. F. Chang, C. Chou, H. F. Yau, Y. H. Chan, J. N. Yih, J. S. Wu. "Angular distribution of polarized photon-pairs in a scattering medium with a Zeeman laser scanning confocal microscope" J. Microsc. 223, 26-32 (2006).
〔6〕 T. Wilson, "The role of the pinhole in confocal imaging system," Handbook of Biological Confocal Microscopy. (ed. By J. Pawley), pp.167-182, Plenum Press, New York, (1995).
〔7〕 T. Wilson and A. R. Carlini, "Size of the detector in confocal imaging systems," Opt. Lett. 12, 227- 229 (1987).
〔8〕 M. Kempe, A. Z. Genack, W. Rudolph, and P. Dorn, "Ballistic and diffuse light detection in confocal and heterodyne imaging systems," J. Opt. Soc. Am. A 14, 216-223 (1997).
〔9〕 C. J. R. Sheppard, M. Roy, and M. D. Sharma, "Image Formation in Low-Coherence and Confocal Interference Micr1oscopes," Appl. Opt. 43, 1493-1502 (2004).
〔10〕 D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, "Optical coherence tomography," Science 254, 1178-1181 (1991).
〔11〕 M. Kempe and W. Rudolph, "Scanning microscopy through thick layers based on linear correlation," Opt. Lett. 19, 1919-1921 (1994).
〔12〕 H.-W. Wang and J. A. Izatt, “Optical Coherence Microscopy,” in Handbook of Optical Coherence Tomography, B. Bouma, G. Tearney, Eds., Marcel Dekker, New York, (2001).
〔13〕 T. D. Wang, M. J. Mandella, C. H. Contag, and G. S. Kino, "Dual-axis confocal microscope for high-resolution in vivo imaging," Opt. Lett. 28, 414-416 (2003).
〔14〕 T. D. Wang, C. H. Contag, M. J. Mandella, N. Chan, and G. S. Kino, "Dual-axes confocal microscopy with post-objective scanning and low-coherence heterodyne detection," Opt. Lett. 28, 1915-1917 (2003).
〔15〕 Jonathan T. C. Liu, Michael J. Mandella, Shai Friedland, Roy Soetikno, James M. Crawford, Christopher H. Contag, Gordon S. Kino, and Thomas D. Wang, "Dual-axes confocal reflectance microscope for distinguishing colonic neoplasia," J. Biomed. Opt. 11, 054019 (2006).
〔16〕 J.T.C. Liu, M. J. Mandella, H. Ra, L. K. Wong, O. Solgaard, G. S. Kino, W. Piyawattanametha, C. H. Contag, and T. D. Wang, "Miniature near-infrared dual-axes confocal microscope utilizing a two-dimensional microelectromechanical systems scanner," Opt. Lett. 32, 256-258 (2007).
〔17〕 C. J. R. Sheppard and M. Gu, "Aberration compensation in confocal microscopy," Appl. Opt. 30, 3563-3568 (1991).
〔18〕 D. K. Hamilton and C. J. R. Sheppard. "A confocal interference microscope, "Opt. Acta 29, 1573-1577 (1982)
〔19〕 M. Schwertner, M. Booth, and T. Wilson, "Characterizing specimen induced aberrations for high NA adaptive optical microscopy," Opt. Express 12, 6540-6552 (2004)
〔20〕 L. -C. Peng, C. Chou, C. -W. Lyu, and J. -C. Hsieh, "Zeeman laser-scanning confocal microscopy in turbid media," Opt. Lett. 26, 349-351 (2001)
〔21〕 M. Gu, Principle of three dimensional imaging in confocal microscopy, World Scientific, Singapore, (1996).
〔22〕 M. Gu and C. J. R. Sheppard, "Effects of defocus and primary spherical aberration on images of a straight edge in confocal microscopy," Appl. Opt. 33, 625-630 (1994).
Chapter 4
〔1〕 K. G. Tanaka and N. Ohta, “Effects of tilt and offset of signal field on heterodyne efficiency,” Appl. Opt. 26, 627-632 (1987).
〔2〕 D. C. Su, M. H. Chiu, and C. D. Chen, “Simple two-frequency laser,” Pre. Eng. 18, 161-163 (1996).
指導教授 游漢輝、周晟
(Hon-Fai Yau、Chien Chou)
審核日期 2007-9-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明