博碩士論文 87247002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:141 、訪客IP:3.137.180.32
姓名 鞠志遠(Chih-Yuan Chu)  查詢紙本館藏   畢業系所 太空科學研究所
論文名稱 Ka波段台灣地區降雨及地面環境傳播特性研究
(The Research of Ka Band Propagation Characteristic through Rain and Tree in Taiwan)
相關論文
★ 2.4GHz無線傳輸系統於遙測與GPS數據整合之研製★ 2.4GHz之無線電波室內傳播通道特性量測與分析
★ K波段地面鏈路降雨衰減效應之研究★ 多層非均勻介質之微波散射模擬分析
★ Ka 波段地面鏈路降雨效應與植被遮蔽 效應之研究★ 地面遙測影像雷達發射與接收模組之設計
★ 合成孔徑雷達之移動目標物速度估測研究★ 小波轉換於合成孔徑雷達干涉相位雜訊之研究
★ 雨滴粒徑分佈應用於Ka波段降雨衰減估計之研究★ 全偏極合成孔徑雷達非監督式目標分類與極化方位角偏移效應估算之研究
★ 全偏極合成孔徑雷達於目標分類之研究★ 影像融合技術應用於地表分類之探討
★ 應用共軛梯度演算法在掃描式合成孔徑雷達目標物特徵增強處理★ 台灣北部地區Ka波段降雨衰減模式之研究
★ 雨滴粒徑與植被遮蔽效應對Ka波段電波衰減影響之探討★ 基因演繹法於全偏極合成孔徑雷達影像對比強化最佳化之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在研究中,我們發現台灣地區的降雨模式是與其他預測模型所預測的值不同。在降雨量研究方面,我們從台灣的三個不同降雨量地區四個測站收集12 年內逐時降雨資料。由於一般所能取得逐時降雨量資料太過粗糙,並不能直接反應與信號衰減的關係,國際間亦以逐分降雨率百分之0.01時的值R0.01做為地區降雨特性判斷標準,因此我們採用逐時-逐分的轉換模型。利用中壢地區自行觀測的逐時逐分關係再利用中壢地區12年累積逐時降雨資料以及台灣其他地區逐時降雨資料透過轉換模型可求出台灣地區逐分降雨分佈特徵圖。將得到結果與ITU建議的經驗累積機率密度分佈模型比較,我們發現降雨分佈的 R0.01 比 ITU- R的預測值低。此外,在雨衰減的研究方面,我們利用自行建制的一個點對點的 Ka 波段降雨衰減量測鏈路在中壢地區測量降雨衰減。根據衰減和降雨量的資料,我們亦發現 ITU-R 與Crane模型在降雨衰減預測上一就有高估現象。
在另一方面,我們利用模擬與實驗研究Ka波段電磁波對植被目標物回波的統計特性。假設Ka波段電磁波信號在無法深入植被內部,即可忽視植被中多重散射的現象。利用建立一個半球中隨角度隨機分布旋轉的有限長圓柱體、針狀體,與圓盤來建立樹木的模型,其中,圓柱體用來描述樹幹與樹枝;針狀體則描述針葉;圓盤描述闊葉。 由模擬與實驗結果可知,由接收機接收到的平面波經過植被的散射結果會呈現冪級數分布,依照植被種類分類可知半球隨機分布的針狀葉接收信號呈現Gamma分布,單純樹枝的接收信號則類似lognormal分布且不與旋轉角度有關。 對於圓盤型的闊葉,接收信號則與葉面旋轉角度相關。水平面向的葉子可用類似表面型散射體的Weibull分布描述。而垂直面向的闊葉與混合樹枝與樹葉的種類以及穿透信號則最接近Gamma分布。
最後,我們研究台灣地區使用Ka 波段的 LMDS 系統受降雨的影響程度。利用前述量測的降雨參數,去分析計算LMDS系統效能,誤碼率以及信號干擾比。在多細胞網路服務架構下,小雨反而會提高信號干擾比,因為其他 BTS 干擾在主要 BTS 周遭的干擾信號受到下雨而中斷。 在單一細胞沒有其他細胞干擾影響下QPSK調變可以使用在台灣地區降雨環境。M-QAM調變時則可以服務到四公里範圍。當細胞干擾存在時,BTS 有效服務邊界會依照QPSK,16QAM和64QAM 不同調變的方式分別縮減 2~3 公里和 3~4 的公里甚至無法使用。總之, 若要在多細胞網路環境中使用,將相對應地BTS 有效服務範圍將會被壓縮。為解決干擾與服務半徑問題,我們使細胞規劃擴張到 4 個頻率加 2 個偏極化。然後,比較兩種細胞規劃間M QAM調變的表現,我們發現 4 個頻率的LMDS網路表現比 2 個頻率網路好。因此,在台灣 LMDS 細胞網路環境中,除非使系統拉遠距離或增加頻道,否則M QAM 的調變方式依然無法有效服務至六公里之標準範圍。
摘要(英) In our study, we find that the rainfall pattern in Taiwan area is a little different with other model prediction. In rainfall research, we conducted a research to collect three different rainfall regions in Taiwan from over 10 years hourly rainrate data. Because hourly rainrate data is too rough to react on the relation of attenuation, a conversion model convert hourly to minutely rainfall data is necessary. For establish the rain conversion model to get the long-term R0.01. 1 minute integration rainfall data was collected at one metropolis, Chungli and hourly data with all 4 areas in Taiwan in same period were used. Continuously, we obtain the representable cumulative minutely rainrate distribution function using the 12 years hourly data of Taiwan area we converted then compared with ITU recommended empirical cumulative distribution functions. We find that the R0.01 of rainrate distribution is lower than ITU-R prediction. On the other way, in research of rain attenuation, we build a point to point Ka band terrestrial propagation system with optical rain gauge system to measure the rain attenuation in Chungli. According to the attenuation and rainfall data, we find that ITU-R and Crane models both make overestimates in rainrate and attenuation prediction.
In another way, the Ka band signal considered at which the penetration into the canopy is shallow. Thus, the multiple scattering mechanisms can be ignored. A vegetation targets are modeled as a half-space of randomly oriented and spaced finite cylinders, or needles, or disks, or their combinations depending the wavelength. The finite length cylinders stand for tree branch or trunk, the needles for stem or coniferous leaves, and the disks for deciduous leaves. For a plane wave exciting such as canopy simulation and experiment results show that the power distribution scattered or pass through to the receiver from a half-space of needle-shaped leaves follows the Gamma distribution. For disk-shaped leaves, the power returns statistics depend on the leaf orientation. We proved the Weibull distribution provides the best predictions for horizontal oriented leaves, which resemble a surface type scatterer. Gamma distribution is found to best represent the power return from nearly vertical disk-shaped leaves a mixture of branches and leaves and the signal transmit through any vegetation.
We also study the rain effects on the performance of a Ka-band LMDS system in Taiwan. The rain distribution statistics is established based on 2-year measurements with 1 minute interval and 12-year measurements with 1 hour interval. The fading due to rain statistics is established based on over 2-year measurements. The system performance in terms of signal-to-interference ratio (S/I), bit error rate, and channel capacity was analyzed. For cellular network service, light rain events induce better S/I because other BTS interference signals around the main BTS are likely to be blocked by rain. The availability of the QPSK modulation scheme in the presence of rain fading without cellular interference meets the margin of BER=10-6 in 6 km cell coverage. When cellular interference presences, the BTS effective service boundary shrinks 2~3 km and 3~4 km using QPSK and 16QAM, respectively, under BER=10-6. Results also suggests that the service radius of a 64QAM modulation scheme with BER=10-6 is less than 4 km without cellular interference but totally not functional under cellular network environment. In this scenario, the 64QAM service radius should be less than 1km and QPSK service radius should be less than 3km according to the channel capacity in rain fading with cellular interference in 6km cell coverage. In summary, in cellular network environment, when we shorten the cell coverage radius, the BTS effective service range will be correspondingly compressed, indicating that the cellular interference is more serious than rain. For solve the interference problem, we expand the cell planning to 4 frequencies and 2 polarizations. Then, the performance of LMDS using M-QAM in 4 frequency network is better than 2 frequency network. In summary, in Taiwan LMDS cellular network environment, M-QAM modulation is difficult to provide an effective and accurate high speed transmission in 6 km large cell coverage radius unless the system expand the frequency channel to increase the distance between each interference sources.
關鍵字(中) ★ ka 波段
★ LMDS
★ 微波
關鍵字(英) ★ microwave
★ LMDS
★ ka band
論文目次 Table of Content
摘要 I
Abstract IV
Table of Content VII
List of Figures IX
List of Tables XIV
Chapter 1. Introduction 1
1.1 Background 1
1.2 Motivations and Objectives 7
1.3 Organization of the Thesis 8
Chapter 2. Ka Band Propagation through Rain 9
2.1 Introduction 9
2.2 Climate Characteristic in Taiwan 10
2.3 Measurement System Setup 10
2.4 Climate Zone and Cumulative Rainrate 11
2.5 Local Conversion Model 13
2.6 Cumulative Attenuation versus Rainrate 15
Chapter 3. Ka Band Propagation through Vegetation 30
3.1 Introduction 30
3.2 Numerical Simulations 30
3.3 Experimental measurements 36
3.4 Results and Discussions 38
3.4.1 Simulation Results 38
3.4.2 Experiment Result 42
Chapter 4. Performance Analysis of 28GHz LMDS System 68
4.1 Introduction 68
4.2 System Description 69
4.2.1 System Setup 69
4.2.2 Rain Model 71
4.3 Analysis of LMDS System Performance 71
4.3.1 Interference Analysis of Boundary Subscriber 71
4.3.2 Channel Capacity in Rain Fading 71
4.3.3 Bit Error Rate 75
4.3.4 Different Cell Coverage 78
4.4 Improvement of LMDS System Performance with 4 Frequencies and 2 Polarizations Cell Planning 78
Chapter 5. Conclusion and Outlook 102
5.1 Conclusion 102
5.2 Future work 105
References 106
參考文獻 [1] Clint Smith, LMDS, McGraw-Hill, 2000.
[2] Ulaby, F. T.; Moore, R. K.; Fung, A. K., Microwave Remote Sensing, Addison-Wesley, 1981.
[3] Tai-Chi Chen Wang, Long-Nan Chang, and Pay-Liam Lin, “Rainfall Estimate from Digital Radars in Taiwan Area,” Tropical Rainfall Measurements, A. Deepak Publishing, pp. 471-482, 1988.
[4] Crane, R. K., “Electromagnetic Wave Propagation through Rain,” Wiley, 1996.
[5] J. O. Laws and D. A. Parsons, “The relation of raindrop-size to intensity,” Transactions on Amer. Geophysics Union, vol. 24, pp. 432-460, 1943.
[6] Bussey, H. E., “Microwave Attenuation Statistics Estimated form Rainfall and Water Vapor Statistics, “ Proceeding of IRE, pp. 781-785 ,1950.
[7] Crane, R.K., "Propagation Phenomena Affecting Satellite Communication Systems Operating in the Centimeter and Millimeter Wavelength Bands," Proc. IEEE, vol. 59, pp. 173-188, Feb 1971.
[8] Crane, R.K., "Automatic Cell Detection and Tracking," IEEE Transactions on Geoscience Electronics, GE-17, 250-262, 1979.
[9] Crane, R.K., "Prediction of Attenuation by Rain," IEEE Transactions on Communication, COM-28(9), 1717-1733, 1980.
[10] Crane, R.K.," Evaluation of Global Model and CCIR Models for Estimation of Rain Rate Statistics," Radio Science, 20(4), 865-879, 1985.
[11] Crane, R.K.,"A Two-Component Rain Model for the Prediction of Attenuation Statistics," Radio Science, 17(6), 1371-1387, 1982.
[12] Rice, P. L., and N. R. Holmberg, “Cumulative Time Statistics of Surface-point Rainfall Rates”, IEEE Transactions on Communication, COM-21, pp. 1131-1136, 1973.
[13] Olsen. R. L., D. V. Roger and D.B. Hodge, “The aRb Relation in the Calculation of Rain Attenuation, "IEEE Transactions on Antennas and Propagation, vol. AP-26, NO.2, March, 1978.
[14] Hsing-Yi Chen and Der-Phone Lin, “Prediction of Rain Attenuation for Wireless Communication,” Microwave and Optical Technology Letters, vol. 26, No. 6 Sep. pp2111-2114, 2000.
[15] Der-Phone Lin and Hsing-Yi Chen, “Volume Integral Equation Solution of Extinction Cross Section by Rain drops in the Range 0.6–100GHz” IEEE Transactions on Antennas and Propagation, vol.49, No.3, pp. 494-499, March 2001.
[16] Matthew, N. O. Sadiku, Numerical Techniques in Electromagnetic, CRC., 1992.
[17] L. W. Li, P. S. Kooi, M. S. Leong, M.Z. Gao, T. S. Yeo, "Microwave Attenuation by Realistically Distorted Raindrops: Part I- Theory," IEEE Transactions on Antennas and Propagation, vol. 43, NO.8, Aug. 1995.
[18] Joo-Hwan Lee, Yang-Su Kim, Jong-Ho Kim, Yong-Seok Choi, "Empirical Conversion Process OF Rain Rate Distribution for Various Integration Time," Asia-Pacific Microwave Conference 2000, pp. 1593 -1597, 2000.
[19] Hao Xu, Theodore S. Rappaport, Robert J. Boyle, and James H. Schaffner, "Measurements and Models for 38-GHz Point-to-Multi- point Radiowave Propagation," IEEE Journal on Selected Areas in Communications, vol. 18, No. 3, pp. 310-321, march 2000.
[20] K. Isaiah Timothy, Jin Teong Ong, and E. B. L. Choo, “Performance of the Site Diversity Technique in Singapore: Preliminary Results,” IEEE Communications Letters, vol.5, No.2, pp.49-51, February 2001.
[21] K I Timouthy and S K Sarkar, "Generalized Mathematical Model for Raindrop Size Distribution (RSD) for application in radiowave propagation and meteorological studies," Electronics Letters 8th pp.895-897 vol.33 No.10 May 1997.
[22] K I Timothy, S Sharma, M Devi and A K Barbara, "Model for estimating rain attenuation at frequencies in range 5-30GHz," Electronics Letters 17th, pp.1505-1506 vol.31 No.17 August 1995.
[23] A. Maitra, “Three-parameter raindrop size distribution modeling at tropical location,” Electronics Letters 11th, vol.36, No.10, pp.906-907, Jan 2000.
[24]T S Yeo, P S Kooi, M S Leong, S S NG, "Microwave Attenuation due to Rainfall at 21.255 GHz in the Singapore Environment," Electronics Letters 5th, vol.26 No.14, pp.1021-1022, July 1990.
[25] L W Li, T S Yeo, P S Kooi, M S Leong, "Comment on Raindrop Size Distribution Model" IEEE Transactions on Antennas and Propagation, vol. 42 No.9, pp.1360, September 1994.
[26] T. S Yeo,. P. S. Kooi, M. S. Leong, "A Two-Year Measurement of Rain Fall Attenuation of CW Microwaves in Singapore," IEEE Transactions on Antennas and Propagation, vol. 41, NO.6, June 1993.
[27] L. W. Li, P. S. Kooi, M. S. Leong, M.Z. Gao, T. S. Yeo, "Microwave Attenuation by Realistically Distorted Raindrops: Part II- Predictions," IEEE Transactions on Antennas and Propagation. vol. 43, NO.8, Auguest 1995.
[28] Jin-Teong Ong and Chun-Ning Zhu, “Rain rate measurements by a rain gauge network in Singapore,” Electronics Letters 30th, vol.33, No.3, pp.240-242, January 1997.
[29] Moupfouma, F. et al., “Modeling of the Rainfall Rate Cumulative Distribution for The Design of Satellite and Terrestrial Communication Systems,” International Journal of Satellite Communications, vol. 13, pp. 105-115, 1995.
[30] J. Chebil and T A Rahman,"Development of 1min rain rate contour maps for microwave applications in Malaysian Peninsula," Electronics Letters 30th, vol.35 No.20 pp.1772-1774, september 1999.
[31] E T Salonen, J P V Poiarces Raptista, "A new global rainfall rate model" 10th International Conference on Antennas and Propagation, IEE Conference Publication, No.436, pp.14-17, April 1997.
[32] M.R. Islam and A.R. Tharek, "Conparison between Path Length Reduction Factor Models Based on Rain Attenuation Measurements in MALAYSIA," Microwave Conference, 2000 Asia-Pacific, 3-6 pp. 1556 -1560, Dec. 2000
[33] L. J. Ippolito, "Radio Propagation for Space Communications Systems," Proc. IEEE, vol. 69, pp. 697-727, 1981.
[34] A. Dissanayake, J. Allnutt and F. Haidara, "A Prediction Model that Combines Rain Attenuation and other Propagation Impairments along Earth-Satallite Paths," IEEE Transactions on Antennas and Propagation, vol. 45, NO.10, Oct. 1997.
[35] Kaivan Karimi and Henry Helmken, “A Study of Satellite Channel Utilization in the Presence of Rain Attenuation in Florida,” Southeastcon '94. Creative Technology Transfer - A Global Affair. Proceedings of the IEEE, pp. 196 -200, 1994.
[36] D.G. Sweeney and C.W. Bostian, "The Dynamics of Rain-Induced Fades," IEEE Transactions on Antennas and Propagation, vol. 40, pp. 275-278 March. 1992.
[37] ITU-R Rec. P 837-2, Specific attenuation model for rain.
[38] ITU-R Rec. P 530-8, Propagation data and prediction methods required for the design of terrestrial line-of-sight systems.
[39] N. E. Daly, T. C. Tozer, D. A. Pearcem, D. Grace and A. G. Burr, "Capacity effects on terrestrial Broadband Wireless Access Networks, Operating in the LMDS Frequency Band, During Rainfall Conditions," VTC2000, pp.2444-2448, 2000.
[40] Miodrag Filip and Evric Vilar, “ Optimum Utilization of the Channel Capacity of a Satellite Link in the Presence of Amplitudes Scintillations and Rain Attenuation,” IEEE Transactions on Comm- unications, Vol. 38, No. 11, pp. 1958-1965, Nov. 1990.
[41] J. T. Horng and K. M. Ju, “Evaluation of Unavailability and Fade Margin in Microwave Radio Communication Links,” 電信研究雙月刊, No. 21:1, pp. 107-112, march 1991.
[42] Y. N. Huang, I. R. Wei and T.W. Huang, “Rain Induced Attenuation at 23GHz in Kaoshiung Area,” 電工雙月刊, No. 34:1, pp. 38-46, February 1991.
[43] C.Y. Chu and K. S. Chen, “ Analysis of Cell Interference on 28 GHz LMDS System,” Proceedings of 2001 EMC Conference, Taipei, pp. 475-477, 2001.
[44] C.Y. Chu, K. S. Chen, Che-Shen Yeh and Chih-Cheng Cho, “Tree and Rain Effects on LMDS System Performance”, Cross Strait Tri- regional Radio Science and Wireless Technology Conference Proceeding, pp. 171-175, 2000.
[45] Saunders, S. R., Antennas and Propagation for Wireless Communication Systems, Wiley, 1999.
[46] Goldhirsh, J and W.J. Vogel, “Mobile satellite system fade statistics for shadowing and mutipath from roadside trees at UHF and L-band,” IEEE Transactions on Antennas and Propagation, vol. AP-37, No. 4, pp. 489-498, 1989.
[47] D. Schleher, Ed. Automatic Detection and Radar Data Processing, Artech House, Dedham, MA, 1980.
[48] A. K. Fung, Microwave Scattering and Emission Models and Their Applications, Artech House, MA, 1994.
[49] C. Acquista, “Light scattering by tenuous particles: a generalization of Rayleigh-Gans-Rocard approach,” Appl. Opt., vol.15, No.11, pp. 2932-2936, 1976.
[50] R. Schiffer and K. O. Thielheim, “Light scattering by dielectric needles and disks,” J. Appl. Physics, vol.50, No.4, pp. 2476-2483, 1979.
[51] Karam, M.A. and A.K. Fung, and Y.M.M. Antar, “Electromagnetic wave scattering form some vegetation samples,” IEEE Transactions on Geoscience and Remote Sensing, vol.23, No. 6, pp. 799-808, 1998.
[52] Ishimaru, A., Wave Propagation and Scattering in Random Media, Academic Press, 1978.
[53] K. S. Chen and A. K. Fung, “Frequency dependence of backscattered signals from forest components,” IEE Proc. Radar, Sonar and Navigation, vol. 142, No. 6, pp. 301-305, 1995.
[54] K.V. Bury, Statistical Models in Applied Science, John Wiley & Sons, New York, NY, 1975.
[55] Abramowitz, M. and I. Stegun, Handbook of Mathematical Functions, Dover, New York, NY, 1965.
[56] Bin Wang and Lin Ho, “Rainy Season of the Asian–Pacific Summer Monsoon,” Journal of Climate Vol. 15, No. 4, pp. 386–398, 2001.
[57] K. S. Chen and M. K. Tasi, “Propagation measurement and system performance analysis of LMDS in Taiwan, Technical Report,” Chunghwa Telecommunication Company Ltd., 2001.
[58] V. K Bhargava, D. Haccoun, R. Matayas, and P.P. Nuspl, Digital Communications by Satellite: Modulation, Multiple Access and Coding, Wiley, New York, 1981.
[59] C.Y. Chu, K. S. Chen, Che-Shen Yeh and Chih-Cheng Cho, “Tree and Rain Effects on LMDS System Performance”, Cross Strait Tri-regional Radio Science and Wireless Technology Conference Proceedings, pp. 171-175, 2000.
[60]李果穎, “K 波段地面鏈路降雨衰減效應之研究,” 國立中央大學太空科學研究所, 碩士論文, 2001
[61]謝光龍, “Ka 波段地面鏈路降雨效應與植被遮蔽效應之研究,” 國立中央大學太空科學研究所, 碩士論文, 2002
[62]簡裕潔, “LMDS 系統受降雨衰減影響下通道使用效能之研究,”國立中央大學電機工程研究所, 碩士論文, 2001
指導教授 陳錕山(Kun Shan Chen) 審核日期 2003-9-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明