博碩士論文 87321001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:3.234.241.200
姓名 陳光龍(Guo-Long Chen)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 納米級氧化鋯結晶粒子之高濃度穩定懸浮液製備
相關論文
★ MFI沸石奈米結晶製備研究★ 氧化鋅奈米粒子的表面改質與分散
★ 濕法製備氧化鋅摻雜鋁之透明導電膜★ 強吸水性透明奈米沸石膜
★ 奈米氧化鋅透明導電膜的製作★ 製作AZO透明導電膜的各種嘗試
★ 奈米結晶氧化鋯合成與分散★ 接枝PDMS之奈米氧化鋯及其與矽膠複合膜之光學性質
★ 奈米氧化鋯之表面接枝及其與壓克力樹酯複合膜之電泳沉積★ 沸石晶核的製備與排列
★ 聚芳香羧酸酯之合成及性質研究★ MFI沸石超微粒子之製作
★ 四氯化鈦之控制水解研究★ 具環氧基矽烷包覆奈米粒子之研究
★ 具再分散性之奈米級氧化鋯結晶粒子之合成研究★ 塑膠表面抗磨層之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究主要目的有二:首先,是以較高濃度(~1M)的鋯鹽溶液,直接以水熱法製備出粒子小於20nm、具有結晶性之氧化鋯穩定粒子懸浮液。其次,是將上述之氧化鋯粒子添加有機界面劑,達到表面改質之目的使其能穩定懸浮於中性環境下。並能以可逆的程序聚集與分散。
有許多文獻是以氯氧鋯溶液直接水熱來合成氧化鋯微結晶,但若酸根濃度超過0.5M以上,四聚物間之雙氫氧橋便很難水解聚縮合形成氧化物了(o-x-o鍵)。所以我們改以共沈澱法合成出氫氧化鋯溶膠,洗去氯離子後再重新以酸來解膠,以降低溶液中酸根之含量,並比較不同酸/鋯比對其水熱合成結果之影響。研究結果得知欲將氫氧化鋯濾餅解膠之最小酸鋯比不得小於1,且製備氫氧化鋯之方式須以控制pH值於鹼性環境下滴定合成才能快速解膠。
在水熱過程中分別探討了溫度、加熱方式及酸鋯比之影響。由粒徑成長趨勢圖可知:1.高溫加快粒子之成核結晶及聚集;2.水熱系統中若含有熱對流或攪拌時,會增加粒子碰撞的頻率,增加粒子聚集成長的速率;3.愈低之酸/鋯比其Induction time愈短,且粒子成長速率亦較快。Zr/HNO3/H2O=1/1.05/65之組成,以96℃加熱30小時可製備出平均粒徑小於20nm,且為單斜晶(monoclinic)的氧化鋯結晶懸浮液。
於合成出之氧化鋯結晶懸浮液中添加有機酸等界劑,確實能有效的將表面改質及而產生穩定之作用。氧化鋯粒子之界面電位之改變隨著界劑帶有之羧基(-COOH)或羥基 (-OH)增加而加大。另外,IEP點偏移程度亦與界劑添加量成正比關係。其中雙酸或三酸如oxalic acid、tataric acid及citric acid視添加多寡可將氧化鋯懸浮液等電位(IEP)往酸偏移1~2.5個pH單位。
在較稀薄鋯離子濃度下,可於水熱前即先行加入界劑。可製備出不聚集、粒徑小於30nm,且結晶性較佳之氧化鋯懸浮液。此法不但簡化原本煩瑣之製備過程,也提高氧化鋯粒子之結晶性。
關鍵字(中) ★ 穩定懸浮液
★ 高濃度
★ 納米結晶
★ 氧化鋯
關鍵字(英)
論文目次 目錄
摘要----------------------------------------------------------------------------------------------Ⅰ
目錄----------------------------------------------------------------------------------------------Ⅱ
圖目錄-------------------------------------------------------------------------------------------Ⅴ
表目錄-------------------------------------------------------------------------------------------Ⅶ
第一章 研究背景---------------------------------------------------------------------------- 1
1-1 納米材料之特性及應用-----------------------------------------------------------------1
1-2 納米材料研究發展及商業應用現況--------------------------------------------------3
1-2.1納米材料研究發展現況-------------------------------------------------------------3
1-2.2納米材料商業應用現況-------------------------------------------------------------5
1-2.3納米材料未來發展趨勢-------------------------------------------------------------5
1-3 氧化鋯的基本認識----------------------------------------------------------------------- 5
1-4 氧化鋯的製法及應用-------------------------------------------------------------------- 6
1-4.1氧化鋯的應用-------------------------------------------------------------------------6
1-4.2氧化鋯的製法-------------------------------------------------------------------------7
第二章 文獻回顧-----------------------------------------------------------------------------9
2-1製備氧化鋯結晶粒子膠體之回顧------------------------------------------------------10
2-2氧化鋯表面改質(Surface Modified)之文獻回顧-------------------------------------15
2-2.1膠體及膠體粒子之穩定性----------------------------------------------------------15
2-2.1.1膠體之定義-----------------------------------------------------------------------15
2-2.1.2 DLVO理論(Deryagin-Landau-Verwey-Overbeek theory) ----------------16
2-2.1.3 立體效應之穩定(Steric Stabilization) --------------------------------------17
2-2.2 添加保護劑之目的------------------------------------------------------------------18
2-2.3 氧化鋯膠體粒子表面改質之相關文獻------------------------------------------19
2-2.3.1 合成後再添加界面劑之性質探討------------------------------------------19
2-2.3.2 合成前添加界面劑之性質探討--------------------------------------------- 20
2-3 研究方向-----------------------------------------------------------------------------------22
第三章 納米級氧化鋯結晶懸浮液製備------------------------------------------------- 24
3-1 氫氧化鋯之製備及解膠條件-----------------------------------------------------------24
3-1.1 實驗方法------------------------------------------------------------------------------25
3-1.2 氫氧化鋯製備方法之探討---------------------------------------------------------26
3-1.3 以氯氧鋯為酸液解膠---------------------------------------------------------------27
3-1.4 結果與討論---------------------------------------------------------------------------28
3-2 水熱溫度及時間之影響-----------------------------------------------------------------29
3-2.1 水熱溫度對粒徑大小及結晶性之影響------------------------------------------29
3-2.2 水熱時間對結晶性之影響---------------------------------------------------------31
3-3 不同水熱方法對粒子聚集成長之影響-----------------------------------------------32
3-4 不同酸鋯比對水解速度及粒子聚集速率之影響-----------------------------------34
3-4.1 實驗方法------------------------------------------------------------------------------34
3-4.2 實驗結果------------------------------------------------------------------------------36
3-4.2.1 DLS結果-------------------------------------------------------------------------36
3-4.2.2 TEM結果-------------------------------------------------------------------------38
3-4.3 結果與討論---------------------------------------------------------------------------43
3-4.3.1 成核結晶------------------------------------------------------------------------ 43
3-4.3.2 聚集成長------------------------------------------------------------------------ 44
3-5 結論-----------------------------------------------------------------------------------------45
第四章 氧化鋯之表面改質(Surface Modification)-----------------------------------47
4-1 界劑及其添加量對界面電位之影響--------------------------------------------------47
4-1.1 實驗方法------------------------------------------------------------------------------47
4-1.2 實驗結果------------------------------------------------------------------------------48
4-1.2.1 界劑添加量之影響------------------------------------------------------------ 49
4-1.2.1不同有機酸對界面電位之影響---------------------------------------------- 53
4-1.3 結果與討論---------------------------------------------------------------------------53
4-2 氧化鋯粒子之表面改質-----------------------------------------------------------------53
4-2.1 實驗方法------------------------------------------------------------------------------54
4-2.2 結果與討論---------------------------------------------------------------------------54
4-3 水熱前添加界面劑-----------------------------------------------------------------------57
4-3.1 不同解膠方法之比較---------------------------------------------------------------57
4-3.2 不同濃度之影響---------------------------------------------------------------------58
4-4 結論-----------------------------------------------------------------------------------------60
第五章 結論---------------------------------------------------------------------------------- 62
參考文獻----------------------------------------------------------------------------------------63
附錄一 實驗所使用之相關藥品------------------------------------------------------------68
附錄二 實驗所使用之相關儀器設備------------------------------------------------------69
參考文獻 1. 林景正, 賴宏仁, "奈米材料技術與發展趨勢", 工業材料, 153期, p95-101, (1999)
2. 蘇品書編譯, "超微粒子材料技術", 第一章超微粒子基礎, p1~13, 復漢出版社印行, 78年2月出版
3. 廖建勛, "奈米材料的發展動態", 化工資訊,Vol.12, 2, p20-27, (1998)
4. Manfred Ruhle, "Microscopy of Structural of Ceramics", Adv. Mater., Vol.9, No.3, p.195-217, (1997)
5. 吳政興, "納米級氧化鋯結晶之製備", 中央大學化工所碩士論文, p.4-5, (1998)
6. 史宗淮, "微粉製程技術簡介", 化工, Vol.42, 6, p.28-35, (1996)
7. Shigeyuki S?miya, Tokuji Akiba, "Hydrothermal Zirconia Powder:A Bibliography", J. Europ. Ceram. Soc., 19, p81-87, (1999)
8. Detef Burgard, Rudiger Nass, Helmut Schmidt, "Process for Producing Weakly Agglomerated Nanoscalar particle", U.S. Patent 5,935,275, (1999)
9. Rijnten H.T., "Formation , Preparation and Properties of hydrous Zirconia", p.315-372
10. Michel D., "Structure of Zirconia Prepared by Homogeneous Precipitation", J. Am. Ceram. Soc., Vol.78, 11, p.2873-80, (1995)
11. B. Djuri?I?, S. Pickering, D. Mcgarry, P. Glaude, P. Tambuyser, K. Schuster, "The Properties of Zirconia Powders Produced by Homogeneous Precipitation", Ceram. Int., Vol. 21, p.195-206, (1995)
12. M. Chtary, M. Henry, J. Livage, "Synthesis of Non-aggregated Nanometric Crystalline Zirconia Particle", Mater. Res. Bull., Vol. 29, No. 5, p.517-522, (1994)
13. Carsten Stocker, Alfons Baoker, "Zirconia aerogels: effect of acid-to-alkoxide ratio, alcoholic solvent and supercritical drying method on structural properties", J. Non-Cryst. Solids, Vol. 223, p.165-178, (1998)
14. J. Livage, F. Beteille, C. Roux, M. Chatry, P. Davidson, "Sol-Gel Synthesis of Oxide Materials", Acta. Mater., Vol. 46, No. 3, p.743-750, (1998)
15. Woodhead J. L., "Improvements in or relating to Zirconium Compounds", British Patent 1,181,794 (1970)
16. Gorokhova E. V., Nazarov V. V., Medvedkova N. G., Kagramanov G. G., Frolov Yu. G., "Synthesis and Properties of Zirconium Dioxide Hydrosol Produced by Hydrolysis of Its Oxychloride", Colloid Journal(RUSS Acadmic of science)-English translation, Vol. 55, p.24-29, (1994)
17. Medvedkova N. G., Nazarov V. V., Gorokhova E. V., "Effect of the Condition of Synthesis on the Size and Phase Composition of Zirconium Dioxide Hydrosol Particles", Colloid Journal(RUSS Acadmic of science)-English translation, Vol. 55, p.715-719, (1994)
18. Bleier A. and Cannon R. M., "Nucleation and Growth of Uniform m-ZrO2", Mat. Res. Soc. Symp. Proc., Vol. 73, p.71-78, (1986)
19. Matsui K. and Ohgai M., "Formation Mechanism of Hydrous-Zirconia Particles Produced by Hydrolysis of ZrOCl2 Solutions", J. Am. Ceram. Soc., Vol.80, No. 8, p.1949-1956, (1997)
20. Lee K., Sathyagal A., Carr P. W., and McCormick A. V., "Synthesis of Zirconia Colloids from Aqueous Salt Solutions", J. Am. Ceram. Soc., Vol.82, No. 2, p.338-342, (1999)
21. Hu M. Z.-C., Harris M. T., and Byers C. H., "Nucleation and Growth for Synthesis of Nanometric Zirconia Particles by Forced Hydrolysis", J. Colloid Interface Soc., Vol.198, p.87-99, (1998)
22. Wusirika R. R., "Preparation of mono-sized zirconia powders by forced hydrolysis", U. S. Patent 4,719,091 (1988)
23. Kato E., "High-dispersion sol or gel of monoclinic zirconia super-microcrystals and production of the same", U. S. Patent 4,784,794 (1988)
24. Cheng H. M., Wu L. J., Ma J. M., Zhang Z. Y. and Qi L. M., "The Effect of pH and Alkaline Earth Ions on the Formation of Nanosized Zirconia Phases Under Hydrothemal Conditions", J. Eup. Ceram. Soc., Vol.19, p.1675-1681, (1999)
25. Cheng H. M., Wu L. J., Ma J. M., Zhao Z. G. and Qi L. M., "Hydrothemal preparation of nanosized cubic ZrO2 powders ", J. Mater. Soc. Letters, Vol.15, p.895-897, (1996)
26. Huang Y. X., Guo G. J., "Synthesis of nanosized zirconia particles via urea hydrolysis", Powder Tech., Vol. 72, p.101-104, (1992)
27. Osaka S., Hata K., Takahashi T., Moto T., "Zirconia sol, method for production thereof, porous ceramic-producing slurry, and porous ceramic product obtained by use thereof", U. S. Patent 5,275,759 (1994)
28. Miros?aw M. B., Krzysztof H., "Crystallization of Zirconia under Hydrothermal Conditions", J. Am. Ceram. Soc., Vol.78, No. 12 p.3397-3400, (1995)
29. Fawzy G. S., Lieh-Jiun Shyu, "Emulsion Precipitation of Yttria-Stabilized Zirconia for Plasma Spray Coatings", J. Am. Ceram. Soc., Vol.74, No.2, p.375-380, (1990)
30. Hardy A. B., Rhine W. E., and Bowen H. K., "Preparation of Spherical, Submicrometer Oxide Particles by Hydrolysis of Emulsified Alkoxide Droplets", J. Am. Ceram. Soc., Vol.76, No.1, p.97-104, (1993)
31. Lee M. H., Tai C. Y., and Lu C. H., "Synthesis of Spherical Zircoina by Precipitation Between Two Water/Oil Emulsions", J. Eur. Ceram. Soc., Vol.19, p.2593-2603, (1999)
32. Drew Myers, "Surfaces, Interfaces, and Colloids", chp. 10, p.187-219,
33. Schmidt H. K., "Organically Modified Silicates and Ceramics an Two-Phase System:Synthesis and Processing", J. Sol-Gel Soc. Tech., Vol. 8, p.557-565, (1997)
34. Schmidt H. K., Mennig M., Nonninger R., Oliveira P. W., Schirra H., "Organic-Inorganic hybrid materials processing and applications",Mat. Res. Soc. Symp. Proc., Vol. 576, p395-407, (1999)
35. Shojai F., Pettersson A. B. A., Mantyla T., Rosenholm J. B., "Electrostatic and electrosteric stabilization of aqueous slips of 3Y-ZrO2 powder", J. Eur. Ceram. Soc., Vol. 20, p.277-283, (2000)
36. Wang J., Gao L., "Surface and electrokinetic properties of Y-TZP suspensions stabilized by polyelectrolytes", Ceram.Int., Vol. 26, p.187-191, (2000)
37. Tang F. Q., Huang X. X., Zhang Y. F., Guo J. K., "Effect of dispersants on surface chemical properties of nano-zirconia suspensions", Ceram.Int., Vol. 26, p.93-97, (2000)
38. Laarz E., Bergstrom L., "The effect of anionic polyelectrolytes on the properties of aqueous silicon nitride suspensions", J. Eur. Ceram. Soc., Vol. 20, p.431-440, (2000)
39. Wang J., and Gau L., "Surface properties of polymer adsorbed zirconia nanoparticles", Nanostruct. Mater., Vol. 11, No. 4, p.451-457, (1999)
40. Solomon M. J., Saeki T., Wan M., Scales P. J., Boger D. V., Usui H., "Effect of Adsorbed Srufactants on toh Rheology of Colloidal Zirconia Suspensions", Langmuir, Vol. 15, p.20-26, (1999)
41. Biggs S., Scales P. J., Leong Y. K., Healy T. W., "Effects of Citric Adsorption on the Interactions between Zirconia surfaces", J. Chem. Soc. Faraday Trans., Vol. 91, No. 17, p.2921-2928, (1995)
42. Hidber P. C., Graule T. J., Gauckler L. J., "Influence of toh Dispersant Structure on Properties of Electrostatically Stabilized Aqueous Alumina Suspensions", J. Eur. Ceram. Soc., Vol. 17, p.239-249, (1997)
43. Percy M. J., Bartlett J. B., Woolfrey J. L., Spiccia L., West B. O., "The influence of β-diketons on the Induction time for hydrolysis of zirconia alkoxides", J. Mater. Chem., Vol. 9, p.499-505, (1999)
44. Zhang Y., Zhiu G. E., Zhang Y. H., Yao L. Z., Mo C. M., "Preparation and Optical Absorption of Dispersions of Nano-TiO2/MMA(Methylmethacrylate) and Nano-TiO2/PMMA(Polymethylmethacrylate)", Mater. Res. Bull., Vol. 34, No.5, p.701-709, (1999)
45. Grodek R. J., "Process of producing collidal zirconia sols and powders using an ion exchange resin", U. S. Patent 5,004,711 (1991)
46. 陳力俊等, "材料電子顯微鏡學", 第四章電子繞射圖形之幾何性質, p75-78, 國科會精儀中心, 83年11月修定版
47. Baes C. F., and Mesmer R. E, "The Hydrolysis of Cations", p152-159, Wiley, New York, (1976)
指導教授 蔣孝澈(A.S.T. Chiang) 審核日期 2000-6-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明