博碩士論文 87321038 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:13.58.121.131
姓名 楊淑萍(Shu-Ping Yang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 三團聯共聚物及鎂離子對微脂粒物理穩定性之影響及其機制探討
相關論文
★ 類澱粉胜肽聚集行為之電腦模擬★ 溶解度參數計算及量測於HPLC純化胜肽程序之最佳化研究
★ 利用恆溫滴定微卡計量測蛋白質分子於溶液中之第二維里係數與自我聚集之行為★ 利用SPRi探討中性DNA探針相較於一般DNA探針在低鹽雜交環境下之優勢
★ 矽奈米線場效電晶體多點之核酸檢測研究★ 使用不帶電中性核酸探針於矽奈米線場效電晶體檢測去氧核醣核酸與微核醣核酸之研究
★ 運用nDNA 修飾引子於PCR及qPCR平台以提升專一性之研究★ 設計中性DNA引子及探針以提升PCR與qPCR專一性之研究
★ 使用中性不帶電去氧核醣核酸探針於矽奈米線場效電晶體檢測微核醣核酸之研究★ 使用不帶電中性核酸探針於原位雜交技術檢測微核醣核酸之研究
★ 設計不帶電中性核酸探針於矽奈米線場效電晶體來改善富含GC鹼基核醣核酸之檢測專一性★ 合成5’-MeNPOC-2’-deoxynucleoside p-methoxy phosphoramidite以作為應用於原位合成之新穎性中性核苷酸之研究
★ 立體紙基外泌體核酸萃取裝置應用於檢測不同微環境下癌細胞所釋放之外泌體與外泌體微小核醣核酸之表現量★ 利用抗原結合區段之抗體片段探針於矽奈米線場效電晶體來改善抗原檢測濃度極限之研究
★ 利用表面電漿共振影像儀驗證最適化之抗非專一性吸附場效電晶體表面於血清環境下之免疫測定★ 使用混合自組裝單層膜於矽奈米線場效電晶體檢測微小核醣核酸之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 微脂粒在生物學上、製藥及醫學上的研究與應用皆扮演著重要的角色,然而,由於微脂粒存在的穩定性的問題,因而限制其應用與發展。所以本研究著眼於瞭解添加物對微脂粒穩定性的影響及其機制探討,期望能提昇微脂粒在應用上的潛力與發展。
本研究嘗試著在膜組成中添加以聚乙基醚(PEO)及聚丙基醚(PPO)為主的三團聯共聚物Pluronic(PF-127);在微脂粒溶液中添加鎂離子,探討其對微脂粒物理穩定性的影響,再由分子層面說明其交互作用機制。物理穩定性的觀測部份,主要是觀測微脂粒粒徑隨時間之變化及包覆物質流失的情形。機制探討部份,本研究以恆溫滴定微卡計(Isothermal Titration Calorimetry, ITC)量測系統的稀釋熱以求得粒子間交互作用位能,進而瞭解微脂粒粒子間的淨作用力,最後以微脂粒粒子間的交互作用力(intervesicle interaction)及磷脂質分子間的交互作用力(intravesicle interaction)兩方面來說明其作用機制。
物理穩定性的觀測部份,結果顯示:在微脂粒膜組成中添加三團聯共聚物(PF-127)能增加微脂粒粒徑的穩定性,在實驗的濃度範圍內,隨著添加量的增加其穩定性也隨之提昇,在水溶液中添加鎂離子亦有相同的情形。在微脂粒膜組成中添加PF-127會促進包覆物質的滲透,隨著量的增加其滲透率隨之增加,此情形在37℃特別明顯;在水溶液中添加鎂離子亦有相同的情形。DSC實驗的結果可知,在微脂粒膜組成中添加PF-127並不影響脂質分子間之交互作用力(intravesicle interaction),配合滲透實驗的結果:PF-127會促進包覆物質的滲透,因此推論,PF-127的疏水端部份嵌入脂雙層的結構中,但嵌入的不夠深。由於PF-127的嵌入影響了脂雙層的排列結構,使得包覆物質的滲透情形增加。從ITC的結果可知,在膜組成中添加PF-127能增加粒子間的排斥位能(repulsive potential),配合界面電位的結果可說明,排斥位能的增加主要是來自於微脂粒表面的親水端(PEO)所形成的立體障礙及水合斥力。當溫度提高至37℃,由於熱波動加強且水合斥力增強,導致排斥位能增加。在37℃,微脂粒膜組成中添加不同量之PF-127, 在水溶液中添加100mM Mg2+,粒子間之交互作用位能減少,推論此時粒子間主要的作用力為凡得瓦力;在水溶液中添加500mM Mg2+,粒子間之交互作用位能增加,此時粒子間主要的作用力為水合斥力。
所以由本實驗可瞭解PF-127及Mg2+對微脂粒穩定性的影響主要是在於粒子間的交互作用力方面,而利用恆溫滴定微卡計有助於探討、瞭解粒子間的交互作用,以說明影響穩定性的機制。
摘要(英) Liposomes are thermodynamically unstable vesicles and have been widely utilized as a model of biomembrane and as a carrier in drug delivery systems. Hence, control and predict stability of vesicle against aggregation and fusion are essential for the various applications.
With an attempt to study the effects of tri-block copolymer (PF-127) and Mg2+ ion on liposomes physical stability and interaction mechanisms , liposomes consisted of DMPC, vitamin E and various quantities of
PF-127 were prepared by the probe sonication method. The physical stability of liposomes were monitored by examining the changes in size with time and hydrophilic fluroscence (5(6)-carbixyfluroscence) permeability. The interaction mechanisms between liposomes were demonstracted in terms of zeta potential and interaction potential(b2/B0).
The results revealed that incorporation of PF-127 and Mg2+ reduced the change in size at 37℃. In addition, PF-127 and Mg2+ greatly promoted the permeability of hydrophilic fluroscence both at 22℃ and 37℃. Furthermore, as the quantities of PF-127 increased, the permeability greatly increased. From the results of DSC spectrum, PF-127 affect the phase transition temperature insignificantly, indicating that PF-127 has no great impact on the intravesicle structure packing. The dates obtained from zeta potential and ITC experiments confirmed that addition of PF-127 enhanced the repulsive potential that was mainly attributed to steric force resulted from PEO group. With regard to the effects of Mg2+ on intervesicle interaction, we concluded that in the presence of 100mM Mg2+ the dominate force between liposomes is van der Waals force. However, in the case of 500mM Mg2+ the dominate force between liposomes is shifted to hydration repulsive force.
In conclusions, the effects of PF-127 on liposome physical stability is mainly attributed to intervesicle interaction.
關鍵字(中) ★ 物理穩定性
★ 三團聯共聚物
★ 微脂粒
關鍵字(英) ★ physical stability
★ triblock copolymer
★ liposome
論文目次 目錄
中文摘要………………………………………………………………Ⅰ
英文摘要………………………………………………………………..Ⅲ
一、 前言………………………………………………………...1
二、 研究原理……………………………………………………4
2.1微脂粒簡介……………………………………………………4
2.1.1微脂粒的組成…………………………………………..4
2.1.2微脂粒的結構…………………………………………..8
2.1.3微脂粒的型態…………………………………………..12
2.2微脂粒膜的性質……………………………………………….14
2.2.1相轉移……………………………………………….14
2.2.2膜滲透……………………………………………….18
2.3微脂粒的穩定性……………………………………………….21
2.3.1物理穩定性…………………………………………..21
2.3.2化學穩定性…………………………………………..29
2.3.3生物穩定性…………………………………………..34
2.4陽離子於微脂粒系統之應用….………………………….36
2.5微脂粒的表面修飾………………………..…………………40
2.6螢光指示劑……………………………………………………44
三、 研究動機與目的…………………………………………..46
四、 實驗裝置與方法…………………………………………..47
4.1實驗藥品……………………………………………………47
4.2實驗儀器設備……………………………………………….48
4.3實驗系統……………………………………………………49
4.3.1溶液的配製…………………………………………..49
4.3.2微脂粒的製備…………………………………………..49
4.3.3粒徑的測量…………………………………………..50
4.3.4滲透實驗……………………………………………….51
4.3.5界面電位的測量……………………………………...51
4.3.6 ITC實驗……………………………………………….52
4.3.7 DSC實驗……………………………………………….52
五、 結果與討論……………………………………………………54
5.1粒徑分析……………………………………………………55
5.2滲透實驗……………………………………………………58
5.2.1螢光指示劑的校正曲線……………………………..58
5.2.2添加物對微脂粒滲透性之影響……………………...…58
5.3界面電位……………………………………………………61
5.4 ITC實驗……………………………………………………63
5.5 DSC實驗……………………………………………………67
六、 結論……………………………………………………...102
七、 參考文獻…………………………………………………103
參考文獻 (1) A. D. Bangham, M. M. Standish, and J. C. Watkins, “Diffusion of Univalent Ions across the Lamellae of Swollen Phosopholipids”, Journal of Molecular Biology, 13, 238-252(1965)
(2) F. Frezard, and A. Garniersuillerot, “Permeability of Lipid Bilayer to Anthracyline Derivatives—Role of the Bilayer Composition and of the Temperature”, Biochimica et Biophysica Acta-Lipids and Lipid Metabolism, 1389, 13-22(1998)
(3) R. Chang, S. Nir, and F. R. Poulain, “Analysis of Binding and Membrane Destabilization of Phospholipid-Membranes by Surfactant Apoprotein-B”, Biochimica et Biophysica Acta—Biomembranes, 1371, 254-264(1998)
(4) S.C Semple, A. Chonn, and P. R. Cullis, “Interactions of Liposomes and Lipid-Based Carrier Systems with Blood Proteins-Relation to Clearance Behavior in Vivo”, Advanced Drug Delivery Reviews,
32, 3-17(1998)
(5) X. M. Zeng, G. P. Martin, and C. Marriott, “The Controlled Delivery of Drugs to the Lung”, International Journal of Pharmaceutics, 124,
149-164(1995)
(6) T. W. Chung, and I. H. Peng, “An Engineering Model to Characterize Oxygen Transfer Rates for Liposome Encapsulated Hemoglobin (LEH)”, Artificial Cell, Blood Substitutes, and Immobilization Biotechnology, 26, 389-398(1998)
(7) H. Farhood, N. Serbina, and L. Huang, “The Role of Dioleoyl Phosphatidylethanolamine in Cationic Liposome Mediated Gene Transfer”, Biochimica et Biophysica Acta, 1235, 289-295(1995)
(8) D. D. Lasic and D. Needham, “The Stealth Liposome:A Prototypical Biomaterial”,Chemical Reviews, 95, 2601-2628(1995)
(9) M. C. Woodle, M. S. Newman, and J. A. Cohen, “Sterically Stabilized Liposomes:Physical and Biological Properties”, Journal of Drug Targeting, 2, 397-403(1994)
(10) L. Trevino, F. Frezard, J. P. Roll, and M. Postel and J. G. Riess, “Novell Liposome Systems Based on the Incorporation of (Perfluoroalkyl)alkenes(FmHnE) into the Bilayer of Phospholipid Liposomes”, Colloids and Surfaces A:Physicochemical and Engineering Aspects, 88, 223-233(1994)
(11) F. Frezard, C. Santaella, P. Vierling , and J. G. Riess, “Fluorinated Phospholipid-Based Vesicles as Potential Drug Carriers:Encapsulation/Sustaining of Drugs and Stability in Human Serum”, Artificial Cells, Blood Substitutes, and Immobilization Biotechnology, 22, 1403-1408(1994)
(12) M. W. Shi, S. L. Law, and R. Tsai, “A Study on the Size and Stability of Lung Surfactant Liposomes Prepared by Sonication Method”,
Journal of Chinese Colloid & Interface Society, 18, 251-259(1995)
(13) N. Borochov, E. J. Wachtel, and D. Bach, “Phase Behavior of Mixtures of Cholesterol and Saturated Phosphatidylglycerols”,
Chemistry and Physics of Lipids, 76, 85-92(1995)
(14) K. Makino, T. Yamada, M Kimura.T Oka, H Ohshima, and T. Kondo
,” Temperature-Induced and Ionic Strength-Induced Conformational-Changes in the Lipid Head Group Region of Liposomes as Suggested by Zeta-Potential Data”, Biophysical Chemistry, 41, 175-183(1991)
(15) D. D. Lasic, Liposomes:from Physics to Applications, Elsevier Science Publishers B.V., Amsterdam, 1993
(16) E. R. C. New, Liposomes:a Practical Approach, Oxford University Press, New York, 1990
(17) R. L. Biltonen,”A Statistical-Thermodynamic View of Cooperative
Structural-Change in Phospholipid-Bilayer Membranes-Their Potential Role in Biological Function”, Journal of Chemical Thermodynamics, 22, 1, 1-19(1990)
(18) J. N. Israelachvili, Intermolecular and Surface Force, Academic Press, London, 1992
(19) R. L. Biltonen, and D. Lichtenberg, ”The Use of Differential Scanning Calorimetry as A Tool to Characteriza Liposome Preperations”, Chemistry and Physics of Lipids, 64, 129-142(1993)
(20) P. G. Barton, and F. D. Gunstone, Journal of Biological Chemistry, 25
, 4470-4476(1975)
(21) H. Matsumura, K. Watanabe, and K. Furusawa, “Flocculation Behavior of Egg Phosphatidylcholine Liposomes Caused by Ca2+ Ion”, Colloids and Surfaces A:Physicochemical and Engineering Aspects, 98, 175-184(1995)
(22) J. Marra, and J. Israelachvili, ”Direct Measurements of Force Between Phosphatidylcholine and Phosphatidylethanolamine Bilayers in Aqueous Electrolyte Solutions”, Biochemistry, 24, 4608-4618(1985)
(23) B. Jönsson, and Wennerström, ”Image-Charge Forces in Phospholipid-Bilyer Systems”, Journal of the Chemical Society-Faraday Transactions Π, 79, 19-35(1983)
(24) J. Wilschut, N. Düzgüens, D. Hoekstra, and D. Papahadjopoulos, ” Modulation of Membrane Fusion by Membrane Fluidity:Temperature Dependence of Divalent Cations Induced Fusion of Phosphatidylserine Vesicles”, Biochemistry, 24, 8-14(1985)
(25) H. Minami, T.Inoue, and R. Simozawa, ”Kinetics of Beryllium-Induced Aggregation of Acidic Phospholipid Vesicles”,Journal of Colloid and Interface Science, 78, 581-585(1996)
(26) S. Ohki, S. Roy, H. Ohshima, and K. Leonard, ”Monovalent Cation-Induced Phospholipid Vesicle Aggregation:Effect of Ion Binding”,
Biochemistry, 23, 6126-6132(1984)
(27) H. Minami, T. Inoue, and R. Simozawa, ”Beryllium Ion Can Induced the Aggregation of Phosphatidylcholine Vesicles”, Langmuir, 12,
3574-3579(1996)
(28) K. M. G. Taylor, and R. M. Morris, ”Thermal Analysis of Phase Transition Behavior in Liposomes”, Thermichimica Acta, 248, 289-301(1995)
(29) Z. Chen, and R. P. Rand, ”The Influence of Cholesterol on Phospholipid Membrane Curvature and Bending Elasticity”,
Biophysical Journal, 73, 267-276(1997)
(30) M. Grit, and J. A. Crommelin, ”Chemical Stability of Liposomes:
Implications for Their Physical Sability”, Chemistry and Physics of Lipids, 64, 3-18(1993)
(31) B. Y. Zaslavsky, A. A. Borovskaya, and S. V. Rogozhin, ”Effect of Lipid-Composition on Hydrophobic Properties of Liposomes”,
Molecular and Cellular Biochemistry, 60, 2, 131-136(1984)
(32) C. R. Kensil, and E. A. Dennis, ”Action of Cobra Venom Phospholipase-A2 on Large Unilamellar Vesicles - Comparison with Small Unilamellar Vesicles and Multibilayers “, Lipids, 20, 2, 80-83
(1985)
(33) M. C. Woodle, M. S. Newman, and F. J. Martin, ”Liposome Leakage Blood Circulation: Comparison of Adsorbed Block Copolymers with Covalent Attachment of PEG”, International Journal of Pharmaceutics, 88, 327-334(1992)
(34) M. Mercadal, J. C. Domingo, M. Bermudez, M. Mora, and M.A.D.
Madariage, ”N-Palmitoylphosphosphstidyaethanolamine Stabilizes Liposomes in the Presence of Human Serum: Effect of Lipidic Composition and System Characterization”, Biochimica et Biophysica Acta,1235,281-288(1995)
(35)J. D. Rossi, and B. A. Wallace, ”Binding of Fibranectin to Phospholipid Vesicle”, Journal of chemistry, 258, 3327-3331(1983)
(36)L. Krupp, A. V. Chobanian, and J. P .Brecher, ”The In-vivo Transformation of Phospholipid Vesicle to a Particle Resembling HDL in the Rat”, Biochemistry Biophysical Research Communication, 72, 1251(1976)
(37)T. Inoue, H. Minami, R. Shimozawa, and G. Sugihara, ”Stability of DLPA/DLPC Mixed Vesicles Against Divalent Cation-Induced Aggregation: Importance of Hydration Force”, Journal of Colloid and Interface Science, 152, 2, 493-506(1992)
(38) S. Ohki, N. Düzgünes, and K. Lenoards, ”Phospholipid Vesicle Aggregation: Effect of Monovalent and Divalent Ions”, Biochemistry, 21, 2127-2133(1982)
(39)N. Düzgünes, S. Nir, J. Wilschut, J. Bentz, C. Newton, ”Calcium- and
Maganesium-Indeced Fusion of Mixed Phosphatdylserine/Phosphatidylcholine Vesicle: Effect of Ion Binding”, Journal of Membrane Biology, 59, 115-125(1981)
(40)H. Minami, and T. Inoue, ”Aggregation of Dipalmitoylphosphatidyl-
choline Vesicles Induced by Some Metal Ions with High Activity for Hydrolysis”, Langmuir, 15, 6643-6651(1999)
(41)T. M. Allen, C. Hansen, and J. Rutledge, ”Liposome with Prolonged Circulation Times: Factors Affecting Uptake by Reticuloendotheial and Other Tissues”, Biochimica et Biophysica Acta, 981, 1, 27-35
(1989)
(42) G. Gregoriadis, Liposomes as Drug Carriers: Recent Trends and Progress,John Wiley
指導教授 陳文逸(Wen-yih Chen) 審核日期 2000-6-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明