博碩士論文 87322052 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:18.118.9.7
姓名 黃建民(Jing-Ming Huang)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 音波式圓錐貫入試驗於土層界面判定之應用
相關論文
★ 動力夯實之有效影響深度與地表振動阻隔研究★ 砂土層中潛盾機地中接合漏水引致地層下陷之案例探討
★ 動力壓密工法施工引致地表振動之阻隔★ 孔洞開挖後軟弱地盤之沉陷行為
★ 超載對打設排水帶後軟弱地盤壓密行為之影響★ 山岳隧道湧水處理之研究
★ 砂土中基樁側向位移之改良研究★ 圓錐貫入試驗中土壤音壓之研究
★ 水泥混合處理砂質土壤液化特性之改良研究★ 扶壁改善深開挖擋土壁體變形行為之研究
★ 微音錐應用於土壤音射特性之研究★ 黏性土壤受定量擠壓變形後之力學行為
★ 黏土中短樁側向位移之改良研究★ 砂土經水泥改良後之力學性質
★ 黏土中模型樁側向位移之改良研究★ 黏土中基樁側向位移改良之數值模擬
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 傳統圓錐貫入試驗所量測之圓錐貫入阻抗變化可能受到土壤層次間土壤類型、強度以及壓縮性等因素影響,造成土壤層面判斷不準確,因此本研究在貫入圓錐錐頭部份裝置微型麥克風,量測土壤在貫入過程所產生的微震音放射,希望藉由音波反應的高敏感特性來改進量測的準確度。
本研究規劃砂土-粘土互層、單層均勻砂土、粘土等微音錐貫入試驗,同時量測圓錐貫入阻抗與聲波訊號,分別就圓錐貫入阻抗於互層貫入之反應及方均根音壓、頻譜分析於土層界面判定等項目進行探討。
均勻砂土貫入試驗中,隨砂土之相對密度Dr愈大所量測到之方均根音壓也愈大,福隆砂之方均根音壓約介於50∼100μV間,套用Tringale(1983)所提出之方均根音壓與土壤粒徑關係圖,符合細砂之等級,並可利用公式進行平均粒徑估算。綜合比較砂土、粘土之音波反應特性,砂土之音壓振幅較大且其頻率分布範圍較廣。
互層土壤貫入試驗結果顯示,在圓錐貫入通過土層界面時,圓錐貫入阻抗有一過渡影響範圍,此一影響範圍隨砂土層之相對密度增加而增加。若利用圓錐貫入阻抗反應來判定土層界面,當圓錐貫入阻抗於兩土層呈現相近之數值時可能造成誤判,此一情況可藉由微音錐貫入試驗獲得改善。
以方均音壓反應來判定土層界面位置,實驗結果顯示,由砂土層貫入至粘土層方均根音壓達尖峰值或穩定後,方均根音壓開始衰減所對應的深度位置即為兩土層界面位置。以頻譜分析來判斷土層界面位置雖不若方均根音壓明顯但仍可作為輔助之用。
摘要(英) This research included three kinds of acoustic cone penetration tests: pure sand, pure clay and sand-clay layered specimens. Also, we measure cone resistance and acoustic signal to study the response of cone resistance, RMS sound pressure, and frequency spectrum in locating the soil interface.
In the test of pure sand specimens, the RMS sound pressure increase with the relative density of the sand. The RMS sound pressure of Fu-Long sand is between 50~100μV. In the figure of the relationship between RMS sound pressure and soil gain size offer by Tringale (1983), it matches the fine sand grade so that we can use the formula to predict the average gain size of sand. This research compares the response of acoustic signal of sand and clay, reveal that not only the amplitude of the acoustic signal of sand is greater than clay but also the consist of frequency is more complex than clay.
In the test of sand-clay layered specimens shows that it has transition coverage in cone resistance when cone is advanced through soil interface. The transition coverage increases with the increase of the relative density of sand layer. If we use cone resistance to determine soil interface, it could make a mistake when cone resistance between sand and clay layers are similar. But it can be improved by acoustic cone penetration test.
In the research of locating soil interface by the RMS sound pressure shows that as penetrating from sand layer to clay layer, the RMS sound pressure is limited or stable, the location of soil interface is the depth where the RMS sound pressure begin decay. Although using frequency analysis to determine the soil interface is not as clear as using the RMS sound pressure, but it still can be used for assistance.
關鍵字(中) ★ 微震音放射
★ 方均根音壓
★ 圓錐貫入阻抗
關鍵字(英) ★ acoustic emission
★ RMS sound pressure
★ cone resistance
論文目次 目 錄
內 容 頁 次
中文摘要………………………………………………………………Ⅰ
英文摘要………………………………………………………………Ⅲ
目錄……………………………………………………………………Ⅳ
圖目錄…………………………………………………………………Ⅷ
表目錄………………………………………………………………ⅩⅠ
符號說明……………………………………………………………ⅩⅡ
第一章 緒論1
1.1 前言1
1.2 研究動機與目的1
1.3 研究方法2
1.4 論文內容3
第二章 文獻回顧4
2.1 圓錐貫入試驗4
2.1.1概述4
2.1.2 圓錐貫入試驗之改良探討4
2.1.3 理論基礎6
2.1.3.1 承載力理論6
2.1.3.2 孔穴擴張理論9
2.1.3.3 應變路徑法10
2.1.4試驗資料分析與應用11
2.1.5 圓錐貫入試驗之影響因素14
2.2 標度槽之發展與應用15
2.2.1 標度系統之改良探討15
2.2.2 標度砂土試體製作17
2.2.3 標度試體邊界控制17
2.2.4 邊界條件之影響18
2.2.5 尺寸效應之影響19
2.2.6 標度槽試驗之評估20
2.3 音波量測在大地工程上之應用21
2.3.1 聲音的基本性質21
2.3.2 微震音放射之基本原理22
2.3.2.1 聲射22
2.3.2.2 岩石聲射之應用23
2.3.2.3 聲射於土壤力學上之應用23
2.3.3微音錐貫入試驗之發展24
2.3.3.1 試驗設備與分析25
第三章 試驗土樣、儀器設備及試驗方法48
3.1 試驗土樣48
3.2 試驗儀器及相關設備49
3.2.1 反力式貫入儀49
3.2.2 微音錐貫入儀49
3.2.3 剛性壓力式標度槽50
3.2.3.1 壓力室配置51
3.2.3.2 加壓設備52
3.2.3.3 輔助設備52
3.2.4 音波量測系統52
3.2.4.1 微震音波量測主體53
3.2.4.2 電源供應系統55
3.2.4.3 資料擷取系統56
3.2.5 移動式霣降儀56
3.2.6 改良夯實試驗夯錘57
3.3 試體製作57
3.3.1 標度槽砂土試體製作57
3.3.2 標度槽粘土試體製作58
3.3.3 標度槽中砂土-粘土互層試體製作59
3.4 試驗方法與步驟60
3.4.1 粘土試體密度之決定60
3.4.2 砂土最大與最小乾密度60
3.4.3 微音錐貫入試驗61
3.4.3.1 音源噪音與背景噪音61
3.4.3.2 背景噪音敏感渡測試63
3.4.3.3 機械噪音的影響與濾除63
3.4.3.4 均勻粘土試體貫入試驗64
3.4.3.5 均勻砂土試體貫入試驗65
3.4.3.6 砂土-粘土互層試體貫入試驗65
3.5 貫入試驗資料處理66
3.5.1 信號資料處理之取樣定理66
3.5.2 DFT和FFT之原理66
3.5.3 FFT的參數選擇67
3.5.4 數位訊號可能發生之誤差現象68
3.5.5 方均根音壓與聲音振幅之換算68
第四章 試驗結果分析與討論87
4.1 標度槽均勻砂土貫入試驗87
4.1.1 方均根音壓計算與分析87
4.1.2 頻譜分析88
4.2 標度槽均勻粘土貫入試驗89
4.2.1 方均根音壓計算與分析89
4.2.2 頻譜分析89
4.3 標度槽互層土壤貫入試驗89
4.3.1 圓錐貫入阻抗量測90
4.3.2 方均根音壓分析與計算91
4.4.3 頻譜分析93
第五章 結論與建議117
5.1 結論117
5.2 建議119
參考文獻120
參考文獻 1. 土質工學會,土質試驗法,土質工學會,日本,第172-188頁(1979)。
2. 王啟川、郭弘政,數位信號處理,全華科技圖書股份有限公司,臺北 (1989)。
3. 李延恭,「淺談貫入試驗之應用及發展」,地工技術雜誌,第16期,第4∼13頁(1986)。
4. 宋雲崴,「土壤中微震音放射之量測研究」,碩士論文,國立中央大學土木工程學系,中壢 (1999)。
5. 洪兆慶,「音波式圓錐貫入試驗與砂土參數相關性之研究」,碩士論文,國立中央大學土木工程研究所,中壢 (1997)。
6. 徐萬樁,噪音與振動控制,協志工業叢書,臺北 (1984)。
7. 梁能,「圓錐貫入試驗中土壤微震音之量測」,碩士論文,國立中央大學土木工程學系,中壢 (1997)。
8. 陳泓文,「砂土坡地井樁受側向力之離心機模型試驗」,博士論文,國立中央大學土木工程學系,中壢 (1999)。
9. 秦中天,「電子式兼測水壓貫入錐的應用」,地工技術雜誌,第16期,第23∼31頁(1986)。
10. 莊傳業,「微震音放射在圓錐貫入試驗中之應用」,碩士論文,國立中央大學土木工程學系,中壢 (1996)。
11. 許懷後、黃安斌,「砂土中圓錐貫入試驗之理論基礎」,第六屆大地工程學術研究討論會論文集,嘉義,第376∼384頁(1995)。
11. 許懷後、黃安斌,「砂土中圓錐貫入試驗之理論基礎」,第六屆大地工程學術研究討論會論文集,嘉義,第376∼384頁(1995)。
13. 陳斗生,「電子式圓錐貫入儀之工程應用」,地工技術雜誌,第13 期,第62∼76頁(1986)。
14. 黃安斌、龔浩然,「圓錐貫入試驗在室內之標定」,第五屆大地工程學術研究討論會論文集,臺北,第421∼426頁(1993)。
15. 楊武智,數位信號處理入門,全華科技圖書股份有限公司,臺北 (1995)。
16. 歐志忠,「黏性土壤中柱體側向抵抗與評估方法之研究」,碩士論文,國立中央大學土木工程研究所,中壢(1991)。
17. 蘇德勝,噪音原理及控制,臺隆出版社,臺北(1991)。
18. Acar, Y.B. and Tumay, M.T., “Strain field around cones in steady penetration,” Journal of Geotechnical Engineering, ASCE, Vol. 112, No.2, pp.207-213 (1986).
18. Acar, Y.B. and Tumay, M.T., “Strain field around cones in steady penetration,” Journal of Geotechnical Engineering, ASCE, Vol. 112, No.2, pp.207-213 (1986).
18. Acar, Y.B. and Tumay, M.T., “Strain field around cones in steady penetration,” Journal of Geotechnical Engineering, ASCE, Vol. 112, No.2, pp.207-213 (1986).
21. Baligh, M.M., “Cavity expansion in sands with curved envelopes,” Journal of the Geotechnical Engineering Division, ASCE, Vol. 102, No. GT11, pp.1131-1146 (1976).
22. Baligh, M.M., “Strain path method,” Journal of Geotechnical Engineering, Vol.111, No.9, pp.1108-1136 (1985).
22. Baligh, M.M., “Strain path method,” Journal of Geotechnical Engineering, Vol.111, No.9, pp.1108-1136 (1985).
22. Baligh, M.M., “Strain path method,” Journal of Geotechnical Engineering, Vol.111, No.9, pp.1108-1136 (1985).
22. Baligh, M.M., “Strain path method,” Journal of Geotechnical Engineering, Vol.111, No.9, pp.1108-1136 (1985).
22. Baligh, M.M., “Strain path method,” Journal of Geotechnical Engineering, Vol.111, No.9, pp.1108-1136 (1985).
27. Carter, J.P., Booker, J.R., and Yeung, S.K., “Cavity expansion in cohesive frictional soils,” Geotechnique, Vol.36, No.3, pp.349-358 (1986).
28. Chen, J.W. and Juang, C.H., “Determination of drained friction angle of sands from CPT,” Journal of Geotechnical Engineering, ASCE, Vol. 122, No. 5, pp.374-381 (1996).
29. De Ruiter, J., “Electric penetrometer for site investigations,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol.97, SM2, pp.457-472 (1971).
29. De Ruiter, J., “Electric penetrometer for site investigations,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol.97, SM2, pp.457-472 (1971).
29. De Ruiter, J., “Electric penetrometer for site investigations,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol.97, SM2, pp.457-472 (1971).
29. De Ruiter, J., “Electric penetrometer for site investigations,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol.97, SM2, pp.457-472 (1971).
29. De Ruiter, J., “Electric penetrometer for site investigations,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol.97, SM2, pp.457-472 (1971).
34. Holden, J.C., “Laboratary research on static cone penetrometers,” University of Florida, Gainsville, Department of Civil Engineering, Internal Report, CE-SM-71-1 (1971).
35. Houlsby, G.T. and Hitchman, R., “Calibration chamber tests of a cone penetrometer in Sand,” Geotechnique, Vol. 38, No. 1, pp.39-44 (1988).
35. Houlsby, G.T. and Hitchman, R., “Calibration chamber tests of a cone penetrometer in Sand,” Geotechnique, Vol. 38, No. 1, pp.39-44 (1988).
35. Houlsby, G.T. and Hitchman, R., “Calibration chamber tests of a cone penetrometer in Sand,” Geotechnique, Vol. 38, No. 1, pp.39-44 (1988).
35. Houlsby, G.T. and Hitchman, R., “Calibration chamber tests of a cone penetrometer in Sand,” Geotechnique, Vol. 38, No. 1, pp.39-44 (1988).
35. Houlsby, G.T. and Hitchman, R., “Calibration chamber tests of a cone penetrometer in Sand,” Geotechnique, Vol. 38, No. 1, pp.39-44 (1988).
35. Houlsby, G.T. and Hitchman, R., “Calibration chamber tests of a cone penetrometer in Sand,” Geotechnique, Vol. 38, No. 1, pp.39-44 (1988).
35. Houlsby, G.T. and Hitchman, R., “Calibration chamber tests of a cone penetrometer in Sand,” Geotechnique, Vol. 38, No. 1, pp.39-44 (1988).
35. Houlsby, G.T. and Hitchman, R., “Calibration chamber tests of a cone penetrometer in Sand,” Geotechnique, Vol. 38, No. 1, pp.39-44 (1988).
35. Houlsby, G.T. and Hitchman, R., “Calibration chamber tests of a cone penetrometer in Sand,” Geotechnique, Vol. 38, No. 1, pp.39-44 (1988).
35. Houlsby, G.T. and Hitchman, R., “Calibration chamber tests of a cone penetrometer in Sand,” Geotechnique, Vol. 38, No. 1, pp.39-44 (1988).
45. Massarsch, K. R., “Acoustic penetration testing,” Proceeding of the 4th Geotechnical Seminar, Field Instrumentation and In-Situ Measurements, Nanyang Tech. Inst., Singapore(1986).
45. Massarsch, K. R., “Acoustic penetration testing,” Proceeding of the 4th Geotechnical Seminar, Field Instrumentation and In-Situ Measurements, Nanyang Tech. Inst., Singapore(1986).
45. Massarsch, K. R., “Acoustic penetration testing,” Proceeding of the 4th Geotechnical Seminar, Field Instrumentation and In-Situ Measurements, Nanyang Tech. Inst., Singapore(1986).
48. Meigh, A.C., Cone penetration testing: methods and interpretation, CIRIA ground engineering report: in-situ testing, Butterworths, London (1987).
48. Meigh, A.C., Cone penetration testing: methods and interpretation, CIRIA ground engineering report: in-situ testing, Butterworths, London (1987).
48. Meigh, A.C., Cone penetration testing: methods and interpretation, CIRIA ground engineering report: in-situ testing, Butterworths, London (1987).
48. Meigh, A.C., Cone penetration testing: methods and interpretation, CIRIA ground engineering report: in-situ testing, Butterworths, London (1987).
48. Meigh, A.C., Cone penetration testing: methods and interpretation, CIRIA ground engineering report: in-situ testing, Butterworths, London (1987).
53. Robertson, P.K. and Campanella, R.G., “Interpretation of cone penetration tests,” Canadian Geotechnical Journal, No. 20, pp.718-745 (1983).
54. Robertson, P.K. and Campanella, R.G., “Liquefaction potential of sands using the CPT,” Journal of Geotechnical Engineering, ASCE, Vol. 111, No.3, pp.384-403(1985).
55. Robertson, P.K., “In situ testing and its application to foundation engineering,” Canadian Geotechnical Journal, No.23, pp.573-594(1986).
56. Robertson, P.K., “Soil classification using the cone penetration test,” Canadian Geotechnical Journal, No. 27, pp.151-158 (1990).
56. Robertson, P.K., “Soil classification using the cone penetration test,” Canadian Geotechnical Journal, No. 27, pp.151-158 (1990).
58. Schmertmann, J. H.,“Guidelines for cone penetration test, performance an design,” Federal Highway Administration, Report FHWA-TS-78-209 (1978).
59. Schnaid, F. and Houlsby, G.T., “Measurement of the properties of sand in a calibration chamber by the cone pressuremeter test,” Geotechnique, Vol.42, No.4, pp.587-601 (1992).
60. Senneset, K. and Janbu, N., “Shear Strength parameter obtained from static cone penetration tests,” ASTM STP 883, Symposium, San Diego (1984).
61. Silvestri, V., Dakroub, H, and Fahmy Y., “Analysis of cone penetration and Indentation tests in clayey soils,” Canadian Geotechnical Journal, No. 34, pp.254-263 (1997).
62. Sweeney, B.P. and Clough G.W., “Design of a large calibration chamber,” Geotechnical Testing Journal, GTJODJ, Vol. 13, No. 1, pp.36-44 (1990).
62. Sweeney, B.P. and Clough G.W., “Design of a large calibration chamber,” Geotechnical Testing Journal, GTJODJ, Vol. 13, No. 1, pp.36-44 (1990).
62. Sweeney, B.P. and Clough G.W., “Design of a large calibration chamber,” Geotechnical Testing Journal, GTJODJ, Vol. 13, No. 1, pp.36-44 (1990).
65. Tringale, P.T., “Soil identification in-situ using an acoustic cone penetrometer, ”Ph.D. Dissertation, University of California, Berkeley (1983).
65. Tringale, P.T., “Soil identification in-situ using an acoustic cone penetrometer, ”Ph.D. Dissertation, University of California, Berkeley (1983).
67. Vesic, A.S., “Expansion of Cavity in Infinite Soil Mass,” Journal of Soil Mechanics and Foundation Division, ASCE, Vol. 98, No. SM3, pp.265-290 (1972).
68. Villet, W.C.B, “Acoustic emissions during the static penetration of soils,” Ph.D. Dissertation , University of California, Berkeley (1981).
68. Villet, W.C.B, “Acoustic emissions during the static penetration of soils,” Ph.D. Dissertation , University of California, Berkeley (1981).
68. Villet, W.C.B, “Acoustic emissions during the static penetration of soils,” Ph.D. Dissertation , University of California, Berkeley (1981).
71. Yu, H. S.,and Mitchell, J. K., “Analysis of cone resistance:review of methods,” Journal of Geotechnical and Geoenvironmental Engineering,ASCE , Vol. 124,No.2.(1998).
71. Yu, H. S.,and Mitchell, J. K., “Analysis of cone resistance:review of methods,” Journal of Geotechnical and Geoenvironmental Engineering,ASCE , Vol. 124,No.2.(1998).
指導教授 張惠文(Huei-wen Chang) 審核日期 2000-7-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明