博碩士論文 87322055 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:3.233.217.242
姓名 江敏吉(Ming-Yi Jung)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 超載對打設排水帶後軟弱地盤壓密行為之影響
相關論文
★ 動力夯實之有效影響深度與地表振動阻隔研究★ 砂土層中潛盾機地中接合漏水引致地層下陷之案例探討
★ 動力壓密工法施工引致地表振動之阻隔★ 音波式圓錐貫入試驗於土層界面判定之應用
★ 孔洞開挖後軟弱地盤之沉陷行為★ 山岳隧道湧水處理之研究
★ 砂土中基樁側向位移之改良研究★ 圓錐貫入試驗中土壤音壓之研究
★ 水泥混合處理砂質土壤液化特性之改良研究★ 扶壁改善深開挖擋土壁體變形行為之研究
★ 微音錐應用於土壤音射特性之研究★ 黏性土壤受定量擠壓變形後之力學行為
★ 黏土中短樁側向位移之改良研究★ 砂土經水泥改良後之力學性質
★ 黏土中模型樁側向位移之改良研究★ 黏土中基樁側向位移改良之數值模擬
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 次壓縮之變化情形,而排水帶對促進土體壓密沉陷之影響亦將在此作
一研究。最後,由室內試驗之結果將與大型土槽之沉陷量監測結果作
一驗証比較,以瞭解室內試驗值與接近現地情況之量測值間的差異。
試驗結果顯示,超載移除後能抑制土體次壓縮的產生,且超載越
大或超載作用時間越長,越能抑制次壓縮以減少土體的殘餘沉陷量。
一般而言,土體在次壓縮階段的變形與對數時間為線性的關係,因此
次壓縮指數Ca為一常數,並用以計算土體次壓縮沉陷量,但試驗中俟
超載移除後土體之次壓縮指數Ca不再為一常數,其值將隨時間而有增
加之趨勢,因此,對超載移除後之沉陷量的概算工作,可利用次壓縮
沉陷曲線中一另行定義的次壓縮指數C²a進行之。若另於試驗土體內
打設排水帶以促進壓密時,則對其沉陷行為有何影響亦為本研究探討
於大型土槽的超載試驗部分,將土槽劃分為打設排水帶區與無排
水帶區等兩區,以比較排水帶加速土層壓密之效能,而經歷約450 天
的沉陷量監測後,開始將屬於超載的0.5 公尺高之回填砂移除,剩餘
之1 公尺高的回填砂則視為作用於土層上之結構荷重,並將繼續對土
層受此結構荷重下之沉陷量作監測工作,以觀察超載移除後土層次壓
縮之變化情形,而綜合各項試驗結果顯示,室內試驗值與大型土槽的
摘要(英) ABSTRACT
The research investigated the consolidation behavior of soft clay
after subjected to a surcharge load, included the comparison of residual
settlements and the secondary compression. Besides, the plastic board
drain accelerate the consolidation of clay were also investigated here.
Finally, the results of laboratory experiments were compared with the
settlement monitoring results of indoor pit test.
The test reveals that as the magnitude of simulated surcharge stress
increases, the time interval following removal of the surcharge load
during which little secondary compression occurs also increases, and
when secondary compression reappears, the coefficient of secondary
compression Cα decreases. For most practical purposes a constant Cα
with time can be used to compute secondary compression settlements.
Postsurcharge secondary compression index, Cα¢, always increases with
time. A secant postsurcharge secondary compression index, Cα², is
therefore introduced for a simple computation of secondary compression
settlements.
In the indoor pit test, the pit were divided into two zones, with or
without installing plastic board drain, which compared the consolidation
behavior accelerated by plastic board drain on soft clay. After 450 days
settlement monitoring work, removed the 0.5m of surcharge fills and left
the 1m of fills which were considered as the permanent load. Then, the
settlement monitoring work were continued, and no apparent settlement
occurred. The test results indicated that the values between laboratory
experimental results and the indoor pit test results made few differences.
關鍵字(中) ★ 排水帶
★ 次壓縮
★ 殘餘沉陷
★ 超載
關鍵字(英) ★ plastic board drain
★ secondary compression
★ residual settlements
★ surcharge
論文目次 中文摘要............................................ I
英文摘要............................................ II
目錄.............................................. III
圖目錄.............................................VII
表目錄.............................................. X
照片目錄............................................ XI
符號說明...........................................XII
第一章緒論......................................... 1
1-1 前言............................................ 1
1-2 研究動機與目的................................... 1
1-3 研究方法........................................ 2
1-4 論文內容........................................ 3
第二章文獻回顧...................................... 4
2-1 土壤的預壓...................................... 4
2-2 土壤預壓的目的................................... 5
2-3 超載工法的考量因素............................... 5
2-3-1 壓密係數..................................... 5
2-3-2 次壓縮的探討.................................. 6
2-4 超載對土壤壓密沉陷的加速作用..................... 7
2-4-1 以超載消除結構物的主壓密沉陷.................. 7
2-4-2 超載對次壓縮沉陷的局部消除.................... 8
2-4-3 回脹後再次出現的壓縮沉陷...................... 9
2-5 超載與垂直應變的關係............................. 9
2-6 超載對土層有效應力的提昇......................... 12
2-7 超載移除後土層之回脹分析......................... 12
2-7-1 土壤回脹參數.................................. 13
2-7-2 二次回脹指數.................................. 13
2-7-3 和時間有關的膨脹速率分析...................... 14
2-8 徑向壓密理論..................................... 15
2-8-1 Barron 壓密理論............................... 15
2-8-2 Kjellman 壓密理論............................. 17
2-8-3 Hansbo 壓密理論............................... 18
2-8-4 徑向壓密理論.................................. 18
2-9 排水帶幾何因子轉換............................... 19
第三章試驗材料、儀器設備及試驗方法.................. 29
3-1 試驗土樣與材料................................... 29
3-1-1 試驗土樣..................................... 29
3-1-2 排水帶....................................... 30
3-2 試體之準備與製作................................. 30
3-2-1 重模土樣之前置處理............................ 30
3-2-2 重模土樣之製作................................ 31
3-3 試驗儀器及設備................................... 31
3-3-1 中型壓密儀................................... 32
3-3-2 單向度壓密試驗儀.............................. 32
3-3-3 大型土槽...................................... 32
3-4 研究方法與試驗規劃............................... 33
3-4-1 單向度壓密試驗................................ 34
3-4-2 小尺度模型試驗................................ 34
3-4-3 大尺度模型試驗................................ 35
3-5 側壁摩擦力對小尺度模型試驗影響之評估............. 35
3-6 試驗方法與步驟................................... 36
3-6-1 小尺度模型試驗之試驗方法...................... 36
3-6-2 大尺度模型試驗之試驗方法...................... 36
第四章試驗結果與分析................................. 53
4-1 側壁摩擦力對土壤壓密的影響探討................... 53
4-1-1 側壁摩擦力對應力傳遞的影響..................... 53
4-1-2 側壁摩擦力對土壤壓密沉陷的影響評估............. 54
4-2 排水帶之室內實驗值與理論值探討................... 55
4-2-1 室內試驗之土壤參數............................ 55
4-2-2 Barron 排水理論探討........................... 56
4-3 超載與排水帶對殘餘沉陷的影響..................... 58
4-3-1 中大紅土的殘餘沉陷分析........................ 59
4-3-2 台北沉泥的殘餘沉陷分析........................ 61
4-3-3 超載與排水帶對土體壓密行為的關係............... 62
4,4 超載與垂直排水帶對次壓縮的影響................... 62
4-4-1 中大紅土的次壓縮分析.......................... 63
4-4-2 台北沉泥的次壓縮分析.......................... 63
4-4-3 超載比R,與次壓縮指數的關係................... 64
4-4-4 超載移除後的次壓縮沉陷量計算.................. 65
4-5 大尺度模型試驗之試驗結果......................... 66
4-5-1 大尺度模型試驗說明............................ 66
4-5-2 大型土槽沉陷監測結果分析...................... 67
4-5-3 大尺度模型之次壓縮分析........................ 68
第五章結論與建議..................................... 88
5-1 結論............................................ 88
5-2 建議............................................ 90
參考文獻............................................ 91
參考文獻 [1]. 張惠文,「垂直砂樁排水法之有效性與改良效果」,地工技術雜
誌,第八期,第44-50頁(1985)。
[2]. 姚義久,「軟弱土層處理-垂直排水法(一)」,現代營建,第39期,
第45-57頁(1983)。
[3]. 姚義久,「軟弱土層處理-垂直排水法(二)」,現代營建,第40期,
第57-65頁(1983)。
[4]. 姚義久,「軟弱土層處理-垂直排水法(三)」,現代營建,第41期,
第67-73頁(1983)。
[5]. 陳金溪、劉世祐、李文郁、田俊銘,軟弱地盤改良研究,中華工
程公司嘉南開發所,第58-104頁(1985)。
[6]. 蘇鼎鈞、魏文德、楊財欽、陳世浩,「基隆河舊河道垂直排水帶
72
現場試驗和成效評估」,地工技術雜誌,第51期,第79-90頁(1995)。
[7]. 許文斌,「垂直排水帶工法在國內應用之探討」,現代營建,第106
期,第29-40頁(1988)。
[8]. 稻田倍穗,軟弱地盤之土質工學,鹿島出版社,第326-329頁
(1981)。(日文)
[9]. 劉維斌,「軟弱地盤打設排水帶後之壓密行為」,碩士論文,國立
中央大學土木工程研究所,中壢(1998)。
[10]. 廖健智,〝垂直排水帶壓密特性與潛變排水量之室內試驗研
究〞,私立中原大學土木工程研究所,中壢(1990)。
[11]. 賴世屏,「垂直排水帶壓密行為預估與檢討」,碩士論文,私立
淡江大學土木工程研究所,台北(1990)。
[12]. 陳成,「垂直排水帶縱向透水能力之相關行為探討」,碩士論文,
私立中原大學土木工程研究所,中壢(1994)。
[13]. 聶豫珍,「垂直排水帶加速壓密行為之探討」,碩士論文,私立
中原大學土木工程研究所,中壢(1995)。
[14]. 陳弘益,「黏土層中排水砂樁之研究」,碩士論文,國立成功大
學土木工程研究所,台南(1997)。
[15]. 王傳奇、鄭智元、劉福生、吳青昆,「地盤改良對新生地儲槽沉
陷之影響」,地工技術雜誌,第66期,第47-54頁(1998)。
[16]. Akagi,T., Effect of displacement type sand drains on strength and
compressibility of soft clays. Publications Dept. of Civil Eng’g
Tokyo Univ., Japan, pp.403-415 (1977).
[17]. Atkison, M. S. and Eldred, J. L. “Consolidation of Soil Using
Vertical Drains,” Vertical Drains, Thomas Tedford. Ltd., London.
198, pp.233-244 (1981).
[18]. Barron. R. A., “Consolidation of Fine Grained Soils by Drain
Wells,” Tans., ASCE, Vol.113, pp.718-754 (1948).
[19]. Bergado, D.T. Investigations of effectiveness of flodrain vertical
drains on ‘undisturbed’ soft Bangkok Clay using laboratory model
test. Report submitted to General Engineering Ltd., Bangkok,
Thailand, and Geosynthetics Department Nylex (Malaysia) Berhad,
Malaysia (1992).
[20]. Bergado, D. T., H. Asakami, M.C. Alfaro & A.S.
Balasubramaniam, Smear effects of vertical drains on soft
Bangkok Clay. J. Geotech. Eng’g. Div. ASCE 117,10: 1509-1530
(1991).
[21]. Berre, T., and Iversen, K., “ Oedometer tests with different
speciment heights on a clay exhibiting large secondary
compression,”Ge`otechnique, Vol. 22, No. 1, pp. 53-70 (1972).
[22]. Burwash, W. J.,and Matich, M. A.,“Stage loading of a highway
embankment on tidal flats,” Can. Geotech. J., Vol. 18, No. 4, pp.
535-542 (1981).
[23]. Casagrande,L., and S. Poulos, “On the Effectiveness of Sand
Drains,” Canadian Geot. J., p.287 (1969).
74
[24]. Carrillo, N., “Simple two and three dimensional cases in the theory
of consolidation of soils,” Journal of Mathematics and Physics,
Vol.21, No.1, pp.67-73 (1942).
[25]. Garga, K. V.,“Effect of sample size on consolidation of a fissured
clay,” Can. Geotech. J., Vol. 25, No. 1, pp. 77-84 (1988).
[26]. Hansbo, S. “Consolidation of clay by bandshaped prefabricated
drains,” Ground Eng’g. 12, pp. 16-25 (1979).
[27]. Hansbo, S., M. Jamiolkowski, & L. Kok, “Consolidation by vertical
drains,” Ge`otechniqu, Vol.31, No.1, pp.45-65 (1981).
[28]. Kodandaramaswamy, K., and Narasimha Rao, S.,“The prediction
of settlements and heave in clays,” Can. Geotech. J., Vol. 17, No.
4, pp. 623-631 (1980).
[29]. Holtz, R.D.“Preloading with prefabricated vertical strip drain,”
Geotextiles & Geomembranes J. 6:109-131 (1987).
[31]. Johnson, S.,“Precompression for improving foundation soils,”
Journal of the Soil Mechanics and Foundations Division, ASCE,
Vol. 96, No. 1, pp. 111-144 (1970).
[32]. Johnson, S., “ Foundation precompression with vertical sand
drains,”Journal of the Soil Mechanics and Foundations Division,
ASCE, Vol. 96, No. 1, pp. 145-175 (1970).
[33]. Kjellman, W., “Accelerating Consolidation of Fine-Grained Soils by
Means on Card-board Wicks,” Proc. 2nd ICSMFE, Rotterdam. Vol.2,
pp.302-305 (1948).
[34]. Lefebvre, G., and Langlois, P., and Lupien, C.,“Laboraty testing
and in situ behaviour of peat as embankment foundation,”Can.
Geotech. J., Vol. 21, No. 2, pp. 322-337 (1984).
[35]. Marche, R., and Menoret, A., and Mayu, P.,“Preloading at the
south end of confignon tunnel, ”Journal of Geotechnical and
Geoenvironmental Engineering, ASCE, Vol. 123, No. 4, pp.
355-368 (1997).
[36]. Mesri, G.,“Coefficient of secondary compression,” Journal of
the Soil Mechanics and Foundations Division, ASCE, Vol. 99, No.
1, pp. 123-137 (1973).
[37]. Mesri, G., and Choi, Y. K., “ The rate of swelling of
overconsolidated clays subjected to unloading,”Ge`otechnique,
Vol. 28, No. 3, pp. 281-307 (1978).
[38]. Mesri, G., and Stark, T. D., and Ajlouni, M. A., and Chen, C. S.,
“Secondary compression of peat with or without surcharging,”
Journal of Geotechnical and Geoenvironmental Engineering,
ASCE, Vol. 123, No. 5, pp. 411-421 (1997).
[39]. Mitchell, J. K., “Fundamentalsof Soil Behavior,” John Wiley &
Sons(1976)
[40]. Richart, F. E. JR., “Review of the Theories for Sand Drains,” Trans.,
ASCE, Vol.124, pp.709-736 (1957).
[41]. Runesson, K., S. Hansbo, and Wiberg, N., and Wiberg, E., “The
Efficiency of partically penetrating vertical drains,” Geotechnique,
Vol.35, No.4, pp511-516(1985).
[42]. Samson, L.,“Postconstruction settlement of an expressway built on
peat by precompression,”Can. Geotech. J., Vol. 22, No. 2, pp.
308-312 (1985).
[43]. Singh, G., and Hattab, T. N.,“A laboratory study of efficiency of
sand drains in relation to methods of installation and spacing,”
Ge`otechnique, Vol. 29, No. 4, pp. 395-422 (1979).
[44]. Sridharan, A., and Prakash, K.,“Secondary compression factor,”
Proc. Institution of Civil Engineers Geotechnical Engineereering,
Vol. 131, pp. 96-131 (1998).
[45]. Sridharan, A. and Rao, S. A., “ Mechanisms controlling the
secondary compression of clays,”Ge`otechnique, Vol. 32, No. 3,
pp. 249-260 (1982).
[46]. Stamatopoulous, A. C., and Kotzias, P. C., “Settlement-time
predictions in preloading,”Journal of Geotechnical Engineering,
ASCE, Vol. 109, No. 6, pp. 807-820 (1983).
[47]. Tan, S. A., and Chew, S. H.,“Comparison of the hyperbolic and
asaoka observational method of monitoring consolidation with
vertical drains,”Soils and Foundations,Vol. 36, No. 3, pp. 31-42
(1996).
[48]. Tan, S. A.,“Ultimate settlement by hyperbolic plot for clay with
vertical drains,” Journal of Geotechnical Engineering, ASCE,
Vol. 119, No. 5, pp. 950-956 (1993).
[49]. Terzaghi, K. , The influence of elasticity and permeability on the
swelling of two-phase systems. Colloid Chemistry, ed. J.
Alexander, 3, Chemical Catalog Co., New York, pp. 65-88 (1931).
[50]. Tomlinson, M. J., and Wilson, D. M.,“Preloading of foundations
by surcharge on filled ground,”Ge`otechnique, Vol. 23, No. 1, pp.
117-120 (1973).
[51]. Ue, S., and Fujiwara, H.,“Effect of preloading on post-construction
consolidation settlement of soft clay subjected to repeated
loading,”Soils and Foundations,Vol. 30, No. 1, pp. 76-86 (1990).
[52]. Win, B. M., Choa, V., Arulrajah, A., and Na, Y. M.,
“One-dimension compression of slurry with radial drainage,”
Soils and Foundations, Vol. 39, No. 4, pp. 9-17 (1999).
[53]. Yeung, A. T.,“Design Curves for prefabricated vertical drains,”
Journal of Geotechnical and Geoenvironmental Engineering,
ASCE, Vol. 123, No. 8, pp. 755-759 (1997).
[54]. Yoshikuni, H. and H. Nakanodo, “Consolidation of Soil by Vertical
Drain wells with finite Permeability,” Jap. Soc, Soils and
Foundation, Vol.14, No. 2, pp.35-46(1974).
指導教授 張惠文(Huei-wen Chang) 審核日期 2000-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明