博碩士論文 87323036 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:19 、訪客IP:54.145.45.143
姓名 古政芳(Zhen-Fan Jo)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 流動式顆粒床過濾器阻礙物配置之設計
相關論文
★ 筆記型電腦改良型自然對流散熱設計★ 移動式顆粒床過濾器濾餅流場與過濾性能之研究
★ IP67防水平板電腦設計研究★ 汽車多媒體導航裝置散熱最佳化研究
★ 流動式顆粒床過濾器三維流場觀察及能性能測試★ 流動式顆粒床過濾器冷性能測試
★ 流動式顆粒床過濾器過濾機制研究★ 二維流動式顆粒床過濾器內部配置設計研究
★ 循環式顆粒床過濾器過濾性能研究★ 流動式顆粒床過濾器之流場型態設計與研究
★ 流動式顆粒床過濾器之流動校正單元設計與分析研究★ 流動式顆粒床過濾器之雙葉片型流動校正單元設計與冷性能過濾機制研究
★ 稻稈固態衍生燃料成型性分析之研究★ 流動式顆粒床過濾器之不對稱葉片設計與冷性能過濾機制研究
★ 流動式顆粒床過濾器之滾筒式粉塵分離系統與冷性能過濾及破碎效應研究★ 稻稈固態衍生燃料加入添加物成型性分析之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本篇論文以實際濾材石英砂為實驗對象,藉由一套過濾顆粒床模型,並搭配不同葉片間距200 mm及250 mm,來探討葉片間距對石英砂流動的影響,實驗上以攝影記錄流動的全部情形,並經由計算顆粒體流動的速度來增加對流場的了解。而對於葉片組成之流場會產生真實靜止區,本論文針對不同葉片間距設計不同半角如
20°與40°阻礙物,並在流場中置入阻礙物來作為流場的改善,消除真實靜止區。實驗結果得知阻礙物的加入有效消除真實靜止區,不過仍會在葉片轉折處有些許的真實靜止區形成,因此實驗上另外再改變阻礙物的位置,觀察不同的阻礙物位置對流動的影響,以其達到真實靜止區之最小化,進而得到一最佳之過濾設計。
關鍵字(中) ★ 流動式過濾顆粒床
★ 阻礙物
關鍵字(英) ★ Granular bed filtration
★ insert
論文目次 摘要…………………………………………………………………....i
附表目錄……………………………………………………………...iv
附圖目錄....……………………......………………………………v
符號說明....…………………………….…...…………………....x
第一章 簡介……………………………...…………………………….1
1.1 研究背景……………………..…………………………………1
1.2 研究目的…………………………………..……………………5
第二章 實驗方法…………………………….……………..………….8
2.1 實驗裝置………………………………………………..………8
2.1.1 實驗模擬系統……………………………………………..8
2.1.2 觀測與量測設備………………………………………….11
2.2 實驗步驟……………………………………………………...12
2.3 速度向量之計算…………………….….…………………...14
2.4 速度分布…………………………..….………….………...15
第三章 對稱型無阻礙物的實驗結果與討論…………….………….17
3.1 流動形態的分類………………………….………….……...17
3.2 流場分析…………………………………….…….………...18
3.2.1 流場影像圖……………………………….………………18
3.2.2 速度向量圖………………………………………….……19
3.2.3 垂直速度分布圖…………………………………….……20
3.2.4 水平速度分布圖…………………………………….……21
第四章 對稱型有阻礙物的實驗結果與討論………………………..24
4.1 流動形態的分類……………………….…………………...24
4.2 流場分析………………………………………….………...25
4.2.1 流場影像圖………….………………………….………25
4.2.2 殘留面積百分比…………………………………….….31
4.2.3 速度向量圖………………………………………………34
4.2.4 垂直速度分布圖…………………………………………35
4.2.5 水平速度分布圖…………………………………………37
第五章 結論………………………………………….…………..…40
參考文獻………………………………………………....………..42
附錄…………………………………………………………………..98
參考文獻 1. Cicero, D.C., Dennis, R.A., Geiling, D.W. and Schmidt, D.K., 1994, “Hot-Gas Cleanup for Coal-Based Gas Turbines,” Mechanical Engineering, 116, No. 9, pp.70-75.
1. Cicero, D.C., Dennis, R.A., Geiling, D.W. and Schmidt, D.K., 1994, “Hot-Gas Cleanup for Coal-Based Gas Turbines,” Mechanical Engineering, 116, No. 9, pp.70-75.
1. Cicero, D.C., Dennis, R.A., Geiling, D.W. and Schmidt, D.K., 1994, “Hot-Gas Cleanup for Coal-Based Gas Turbines,” Mechanical Engineering, 116, No. 9, pp.70-75.
1. Cicero, D.C., Dennis, R.A., Geiling, D.W. and Schmidt, D.K., 1994, “Hot-Gas Cleanup for Coal-Based Gas Turbines,” Mechanical Engineering, 116, No. 9, pp.70-75.
1. Cicero, D.C., Dennis, R.A., Geiling, D.W. and Schmidt, D.K., 1994, “Hot-Gas Cleanup for Coal-Based Gas Turbines,” Mechanical Engineering, 116, No. 9, pp.70-75.
6. Tsubaki, J. and Chi T., 1988, “Gas Filtration in Granular Moving Beds - An Experimental Study,” Canadian J. of Chemical Engineering, Vol. 66, pp. 271-275.
7. Macias-Machin, A., Cuellar, J., Estevez A. and Jaraiz, E., 1992, “Simple Design of a Crossflow Moving Bed Heat Exchanger-Filter,” Filtration & Separation, March/April, pp. 155-161.
8. Song, X., Wang, Z., Jin Y. and Gong M., 1993, “Investigations on Hydrodynamics of Radial Flow Moving Bed Reactors,” Chemical Engineering Technology, Vol. 16, pp. 383-388.
9. Ghadiri, M., Seville, J.P.K. and Clift, R., 1993, “Fluidised Bed Filtration of Gases at High Temperatures,” Trans. ICHemE, Vol. 71, Part A, pp. 371-381.
10. Klingspor, J.S. and Vernon, J.L., 1988, “Particulate Control for Coal Combustion,” IEA Coal Research Report, IEACR/05, London, England.
11. Saxena, S.C., Henry, R.R. and Podolski, W.F., 1985, “Particulate Removal from High Temperature, High-Pressure Combustion Gases,” Prog. Energy Combust. Sci., 11, No. 3, pp. 193-251.
11. Saxena, S.C., Henry, R.R. and Podolski, W.F., 1985, “Particulate Removal from High Temperature, High-Pressure Combustion Gases,” Prog. Energy Combust. Sci., 11, No. 3, pp. 193-251.
13. Wilson, J.S., 1988, “Status of Pressurized Fluidized Bed Research Projects Sponsored by the U.S. Department of Energy,” IEA PFBC Basic Res. Workshop, Goeteborg, Sweden.
13. Wilson, J.S., 1988, “Status of Pressurized Fluidized Bed Research Projects Sponsored by the U.S. Department of Energy,” IEA PFBC Basic Res. Workshop, Goeteborg, Sweden.
13. Wilson, J.S., 1988, “Status of Pressurized Fluidized Bed Research Projects Sponsored by the U.S. Department of Energy,” IEA PFBC Basic Res. Workshop, Goeteborg, Sweden.
13. Wilson, J.S., 1988, “Status of Pressurized Fluidized Bed Research Projects Sponsored by the U.S. Department of Energy,” IEA PFBC Basic Res. Workshop, Goeteborg, Sweden.
17. Zevenhoven, C.A.P., 1992, “Particle Charging and Granular Bed Filtration for High Temperature Applications,” Ph.D. Dissertation. Delft University of Technology, The Netherlands.
17. Zevenhoven, C.A.P., 1992, “Particle Charging and Granular Bed Filtration for High Temperature Applications,” Ph.D. Dissertation. Delft University of Technology, The Netherlands.
19. Zevenhoven, C.A.P., Droppert, P.J. and van de Leur R.H.M., 1991, “Electrical Characterization of Granular Materials,” Adv. Powder Technol., 2, No. 3, pp. 225-235.
20. Zevenhoven, C.A.P., Scarlett, B. and Andries, J., 1992, “The Filtration of PFBC Combustion Gas in a Granular Bed Filter,” Filtration & Separation, 29, No. 3, pp. 239-244.
20. Zevenhoven, C.A.P., Scarlett, B. and Andries, J., 1992, “The Filtration of PFBC Combustion Gas in a Granular Bed Filter,” Filtration & Separation, 29, No. 3, pp. 239-244.
22. Squires, A.M., 1967, “Air Pollution: The Control of SO2 From Power Stacks, Part II - The Removal of SO2 From Stack Gases,” Chemical Engineering, 74, No. 24, pp. 133-140.
22. Squires, A.M., 1967, “Air Pollution: The Control of SO2 From Power Stacks, Part II - The Removal of SO2 From Stack Gases,” Chemical Engineering, 74, No. 24, pp. 133-140.
24. Dorfan, M.I., 1952, “Method and Apparatus for Suppressing Steam and Dust Rising from Coke Being Quenched,” U.S. Patent No. 2,604,187.
24. Dorfan, M.I., 1952, “Method and Apparatus for Suppressing Steam and Dust Rising from Coke Being Quenched,” U.S. Patent No. 2,604,187.
24. Dorfan, M.I., 1952, “Method and Apparatus for Suppressing Steam and Dust Rising from Coke Being Quenched,” U.S. Patent No. 2,604,187.
27. Reese, R.G., 1977, “The Application of a Dry Scrubber to Exhaust Gas Cleanup,” Tappi (Journal of the Technical Association of the Pulp and Paper Industry), 6, No. 3, pp. 109-111.
27. Reese, R.G., 1977, “The Application of a Dry Scrubber to Exhaust Gas Cleanup,” Tappi (Journal of the Technical Association of the Pulp and Paper Industry), 6, No. 3, pp. 109-111.
29. Guillory, J.L., Placer, F.M. and Grace, D.S., 1981, “Electrostatic Enhancement of Moving Bed Granular Filtration,” Environment International 6, pp. 387-395.
30. 王正炎, 1997, 「氣體淨化系統流動式顆粒床流場之實驗分析」, 國立中央大學機械工程研究所.
31. 蔡富豪, 1997, 「流動式顆粒床內之顆粒流場分析」, 國立中央大學機械工程研究所.
32. Newton, R.H., Dunham, G.S., and Simpson, T. P., 1945, “The TCC Catalytic Cracking Process for Motor Gasoline Production ,” Trans.A.I.ChE., 41, pp. 215-218.
33. Morse, H. H., Patent, U. S. 2,255,052, Method of Effecting Contact in a Pebble Heater ( May 29, 1951 ).
34. Johanson, J. R., 1966, “The Use of Flow Corrective Inserts in Bins,” Trans.ASME J.Eng.Ind., 88, pp. 224-230.
35. Johanson, J. R., and Kleysteuber, W. K., 1966, “Flow Corrective Inserts in Bins,” Chem.Eng.Prog., 62, No. 11, pp. 79-83.
36. Johanson, J. R., 1967/68, “The Placement of Insert to Correct Flow Problems,” Powder Technol., 1, pp. 328-333.
指導教授 蕭述三(Shu-San Hsiau) 審核日期 2000-6-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明