博碩士論文 87324009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:4 、訪客IP:3.85.245.126
姓名 黃慕真(Mu-Jen Huang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 高速連結之時序與資料回復
(High Speed Link Timing and Data Recovery)
相關論文
★ 匯流排上的時間延遲及交談失真的偵錯設計技巧★ 適用於自動測試機台的時間產生器
★ 混波測試匯流排的量測學★ 基於IEEE 1057之類比數位轉換器量測技術
★ 應用於高畫質電視之載波回復電路架構★ 單晶片測試機之前端驅動電路設計
★ 系統晶片類比數位轉換器測試之數位信號處理程式庫★ A 2.5V,0.35um,2.5Gbps 傳送接收器設計
★ 內建式類比數位/數位類比轉換器線性度之自我測試★ 高準確度及低成本之電壓量測技術
★ 應用於ATSC VSB時脈回復之全數位延遲線迴路★ 適用於晶片間通訊之高速傳輸介面
★ 內建式類比數位轉換器之自我校正方法★ 多模組之相位同步技術
★ 使用低增益寬頻率調整範圍壓控震盪器 之1.25-GHz八相位鎖相迴路★ 高速傳輸連結網路的分析和模擬
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在本篇論文中,我們提出了一種新的時序與資料回復的方法。相較於傳統所用的鎖相迴路,我們採用了現今相當流行的相位選擇架構。在此設計中,我們利用對資料的五倍過取樣程序,從所獲得的訊息中萃取出資料轉變狀態的位置。由此,我們便可以知道最佳的資料取樣位置。
資料轉態的位置會受到靜態相位錯誤或相位抖動的影響而漂移,這樣的非理想現象將造成系統訊雜比與時序邊限的降低。因此,我們必須設法去追蹤這樣的漂移並且做資料回復。
在我們的設計中,利用了多數閘來增加資料的可信賴度,並且由互斥閘來得到資料轉態的情形。接下來我們使用信賴計數器來統計資料轉態的結果,並且決定最佳取樣點的位置。
除此之外,我們建立了一套資料錯誤率的預測與分析方法。由這個分析的結果,設計者可以根據所需要的規格來選擇適當的系統參數並避免做過多的錯誤嘗試。
最後,我們使用了可程式閘陣列來做硬體的功能驗證,並且內建了一個錯誤計數模組來計算資料錯誤的比率。
摘要(英) In this thesis, a novel timing and data recovery algorithm for high-speed serial link is proposed. Instead of using the traditional PLL, we use the phase picking architecture. In our design, a 5X oversampling using multi-phase clocks are used to obtain the data information. And our purpose is to find the data transition position and pick the optimum phase for data sampling according to such information.
The transition point may move due to static phase error or jitters (dynamic phase error due to noise). These non-ideal effects cause the reduction of SNR and timing margin. So, the system should detect the phase errors and output a recovery clock to track it.
First, a majority voter chain is applied to enhance the data reliability. Then the transition position of each bit can be detected by XOR. The transition information are accumulated in the confidence counter and the machine will decide that whether the sampling phase should change. By such recovery mechanism, the sampling phase is fixed at the central point of data. Finally, according to the phase selected, three sample values are processed by a majority voter to obtain the recovered data.
Besides, we also develop an analysis method for bit error rate prediction according to the different system parameters. By the analysis results, one can decide the system parameters depend on the design specifications instead of iterations.
Finally, we use Xilinx FPGA for function simulation of the recovery system. Moreover, a bit error measurement modules are built in to test the system performance.
關鍵字(中) ★ 時序與資料回復 關鍵字(英) ★ High Speed Link
★ Data Recovery
論文目次 Contents
1. Introduction………………………………………………………1
1.1 Motivations………………………………………………………………1
1.2 Timing and Data Recovery Schemes in High Speed links………1
1.2.1 Clock Recovery in Phase or Delay Lock Loop…………2
1.2.2 Data Recovery Scheme of Phase Picker…………………2
1.3 Thesis Organization……………………………………………………4
2. Methodology of High Speed Link………………………………………5
2.1 Methodology Overview…………………………………………………5
2.2 Hardware Architecture…………………………………………………6
2.2.1 Oversampler……………………………………………………7
2.2.2 Data Process…………………………………………………7
2.2.3 Transition Detect……………………………………………8
2.2.4 Transition Decision Processor……………………………9
2.2.5 State Register……………………………………………………………10
2.2.6 Confidence Counter………………………………………11
2.2.7 LR counter………………………………………………………………12
2.2.8 Optimum Phase/Data Selector……………………………13
3. Bit Error Rate Analysis and Software Simulation……………15
3.1 BER Analysis…………………………………………………………………15
3.1.1 Non-ideal Effects…………………………………………15
3.1.2 Bit Error Probability with AWGN………………………16
3.1.3 BER Analysis for Clocked Data Recovery17
3.2 BER Analysis by Matlab……………………………………………20
3.2.1 BER versus Transition Position…………………………20
3.2.2 BER versus Majority Voter………………………………20
3.2.3 BER under Different Confidence Counter……………21
3.2.4 BER Analysis of Random Data…………………………23
3.2.5 Parameter Conclusion………………………………………23
3.3 BER Simulation………………………………………………………………23
3.3.1 Channel Model………………………………………………23
3.3.2 The eye Diagram when AWGN induced……………………24
3.3.3 Simulation Results of C program………………………25
3.3.4 Specifications Concluded…………………………………26
4. FPGA Simulation…………………………………………………27
4.1 Simulation Instrument………………….………………………………………27
4.2 Simulation Block Diagram…………………... …………………27
4.3 Multi-Phase Generator…………………... …………………... 28
4.4 Initialize…………………... …………………... ……………28
4.5 PRBS…………………... …………………... …………………...29
4.6 Channel………………….……………………...………………….…29
4.7 Recovery System…………………...…………………...………30
4.8 Optimum Clock and Data Selector………………….………………31
4.9 Matched Data Generator…………………... …………………...32
4.9.1 The pattern Detector………………….. ……………32
4.9.2 Configurations of the Matched Data Generator………33
4.10 Error Counter….. …………………... …………………... …35
4.11 Hardware Simulation Results…………………... ……………35
4.11.1 Function Simulation Results…………………... …36
4.11.2 BER Measurement…………………... ………………….37
4.11.3 Phasse Jitter of the Recovery Clock………………37
4.11.4 Frequency Error Endurance…………………... ………38
5. Conclusion………………………………………………………….40
6. Reference…………………………………………………………...41
參考文獻 [1] John Poulton and William J. Dally,” A tracking clock recovery receiver for 4Gb/s signaling,” IEEE Micro, p.25-p.27, Jan-Feb, 1998.
[2] Alen Fiedler etal, “ A 1.0625Gbps transceiver with 2X presampling and transmit pre-emphasis, “ ISSCC Conference, Session 15, p.238-p.239, Feb 1997.
[3] Ramin Farjad-Rad, Chih-Kong Ken Yang, Mark Horowitz and Thomas Lee, “ A 0.3um CMOS 8-Gb/s 4-PAM Serial Link Transceiver,”1999 Symposia on Technology and Circuits, Session 5, High Speed Link II.
[4] C.-K. Yang and M. Horowitz, “ A 0.8um CMOS 2.5Gbps oversampling receiver and transmitter for serial links,” IEEE J. Solid-State Circuits, VOL. 31, NO.12, p.2015-p.2023,December, 1996.
[5] Yongsarn Moon and Deog-Kyoon Jeong , “A 1 Gbps Transceiver witg Receiver- End Deskewing Capability using Non-Uniform Tracked Oversampling and a 250- 750MHz Four-Phase DLL,’ 1999 Symposia on Technology and Circuits, Session 5, High Speed Link II.
[6] Kyeongho Lee, Yeshik Shin, Sungjoon Kim, Deog-Kyoon Jeong, Gyudong Kim,
and Victor Da Costa, “1.04GBd Low EMI Digital Video Interface System Using
Small Swing Serial Link Technique,” IEEE J. Solid-State Circuits, VOL. 33, NO.
5, p.816 —p.823, May 1998.
[7] Kyeongho Lee, Sungjoon Kim, Gijung Ahn, and Deog-Kyoon Jeong,” A CMOS
Serial Link for Fully Duplexed Data Communication,” IEEE J. Solid-State
Circuits, VOL 30, NO.4, p.353-p.364, April, 1995.
[8] Sungjoon Kim, Kyeongho Lee, Deog-Kyoon Jeong, David D. Lee, and Andreas G. Nowatzyk,”An 800Mbps Multi-Channel Serial Link with 3X Oversampling,” IEEE Custom Integrated Circuits Conference, p.451-p.454, 1995
[9] Chih-Kong Ken Yang, Ramin Farjad-Rad, and Mark A. Horowitz, “ A 0.5-um
CMOS 4.0-Gbit/s Serial Link Transceiver with Data Recovery Using
Oversampling,” IEEE J. Solid-State Circuits, VOL.33, NO.5, p.713-p.722, May
1998.
[10] Roland E.Best, Phase-Locked Loops, McGraw-Hill, Inc. 2nd edition.
[11] Bernard Sklar, Digital Communications, P T R Prentice Hall, Inc.
[12] Ah-Lyan Yee, Richard Gu, Heng-Chih Lin, Andy Tsong, Richard Prentice, James Tran, “An Intergratable 1-2.5Gbps Low Jitter CMOS Transceiver with Built in Self Test Capability,” 1999 Symposia on Technology and Circuits, Session 5, High Speed Link II.
指導教授 蘇朝琴(Chauchin Su) 審核日期 2000-6-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明