博碩士論文 87324025 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:3.145.15.205
姓名 邱顯欽(Hsien-Chin Chiu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 深次微米通道摻雜場效應電晶體及其在微波功率放大器之應用
(Deep submicron doped-channel HFETs and its application on microwave power amplifier)
相關論文
★ 增強型異質結構高速移導率電晶體大信號模型之建立及其在微波放大器之應用★ 空乏型暨增強型Metamorphic HEMT之製作與研究
★ 增強型與空乏型砷化鋁鎵/砷化銦鎵假晶格高電子遷移率電晶體: 元件特性、模型與電路應用★ 氧化鋁基板上微波功率放大器之研製
★ 氧化鋁基板上積體化微波降頻器電路之研製★ 順序特徵結構設計研究及其應用在特徵模子去耦合與最小特徵值靈敏度
★ 順序特徵結構設計研究及其應用在最大強健穩定度與最小迴授增益★ LDMOS功率電晶體元件設計、特性分析及其模型之建立
★ CMOS無線通訊接收端模組之設計與實現★ 積體化微波被動元件之研製與2.4GHz射頻電路設計
★ 異質結構高速移導率電晶體模擬、製作與大訊號模型之建立★ 氧化鋁基板微波電路積體化之2.4 GHz接收端模組研製
★ 氧化鋁基板上積體化被動元件及其微波電路設計與研製★ 二維至三維微波被動元件與射頻電路之設計與研製
★ CMOS射頻無線通訊發射端電路設計★ 次微米金氧半場效電晶體高頻大訊號模型及應用於微波積體電路之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 摘 要
隨著個人無線通訊系統熱烈蓬勃的發展,微波射頻電路模組的效能及品質往往決定無線通訊晶片模組的競爭力,也因此通訊品質的好壞與可傳送的資料量大小皆成為重要的關鍵。但在頻寬有限的情況下,無線通訊勢必朝向更高頻與微波領域發展,以提供更卓越的通訊品質。在射頻電路模組中,功率放大器之效能決定了整體射頻模組的大部分功率損耗,所以其品質好壞與否往往主宰了電池的續航力。故本論文主體從主動元件之設計,開發,與改良,配合新型材料之被動元件,橋墩立體技術設計並研製出一C-頻段(5.8 GHz) 單晶微波功率放大器及一K-頻段(20 GHz) 增益放大器。
在本論文中,延續著本實驗室在通道摻雜異質接面場效應電晶體高電流推動能力,高線性度,以及高崩潰電壓之研究,首先我們利用不同的磊晶結構改善電晶體之高源極和汲極阻抗,再配合不同之製程技術改良元件之閘極漏電流,進而改善整體元件功率特性及效能。
在第三章中,由於功率元件在操作時極易產生出大量的熱,而此因素又會影響元件之特性,所以此章節針對通道摻雜異質接面場效應電晶體以及傳統高電子移導率電晶體 (HEMTs) 進行一系列元件直流,高頻,以及功率方面高溫特性之研究。
第四章的部份主要是應用低介電係數材料(BCB)製作主動元件之覆蓋層以及功率元件之橋墩技術,相較於傳統製程此先進材料既不會增加太多的寄生電容,也可大幅度簡化製程之步驟。
在第五章中,為了大幅度增加元件之有效操作頻率,我們利用電子束微影設備及三層電子束光阻開發出閘極寬度為0.2微米之T-型閘極,此先進製程將元件電流增益截止頻率及功率增益截止頻率大幅增加為45 GHz 以及 90 GHz。除此之外,也利用改良式Curtice大訊號模型建立此主動元件之模型,並配合負載拉引功率量測系統驗證此大訊號模型。
最後,利用高頻電路設計軟體,電磁場論模擬被動元件之特性,並配合光罩製版,金屬剝離,以及電子束微影技術完成適用於C-頻段以及 K-頻段單晶微波積體功率放大器。
摘要(英) ABSTRACT
Deep sub-micron doped-channel heterostructure field-effect transistors (DCFETs) with a high current density and superior microwave power performance was developed and characterized. Due to its excellent current driving capability, Schottky gate performance and thermal stability, it has been widely investigated for microwave power devices and high-speed devices.
A major drawback of DCFETs is their large parasitic source and drain resistances caused by using a high bandgap undoped Schottky layer beneath the gate metal. In this regard, we proposed a method to reduce parasitic resistances by inserting a planar Si δ- doped layer into the InGaP Schottky layer to solve this problem. Furthermore, to achieve a high yield and high uniformity of large area power device crossing the wafer, reactive ion etching was applied to the gate recess process of InGaP/InGaAs doped-channel heterostructure FETs.
Power transistor consumes a lot of dc power and a huge amount of heat will be generated during the operation, this affects the performance and the reliability of devices and circuits. To ensure a stable high power performance of a FET for long-time operation, its evaluation at high temperatures is an essential issue, since large amounts of heat will be generated during the operation. In this study, we will discuss the effect on the dc, rf, and power characteristics between DCFETs and pHEMTs from room temperature (25 C) to 150 C.
A novel Al0.5Ga0.5As/InGaAs enhancement mode pHEMT with a large linear operation range was developed and studied. In order to achieve an enhancement-mode operation in pHEMT design, the thickness of the device Schottky layer is more flimsy than the traditional depletion-mode design. This thin Schottky layer results in the device performance being easily influenced by the surface states, owing to the channel layer closing to the surface. Therefore, we apply the low-k photo- sensitive-benzocyclobutene (BCB) layer to replace the traditional SiNx passivation layer. In addition, BCB passivated layers also reduce the oxidization problem in a high Al mole fraction Schottky layer.
In order to fabricate high performance microwave power transistor for millimeter wave application, sub-micron T-shape gate demonstrated by using e-beam lithography is an efficient method. By using Raith-150 e-beam writer and tri-layer polymer photoresist, the 0.2 µm gate length InGaP/InGaAs DCFET was developed and characterized. Besides, the Curtice large signal model was applied on 0.2 µm gate -length InGaP/InGaAs DCFET. In order to quality the accuracy of the established Curtice model, the device load-pull results which is including power performance, load impendence, are compared with the simulated results on HP advanced design system (HP-ADS) environment.
C-band and K-band MMIC amplifiers based on 0.2 µm gate length InGaP/InGaAs DCFET and BCB passive components have been designed and fabricated. The BCB 3-D MMIC exhibits several benefits including simple process, low parasitic effects for active device, and high circuit robustness. Based on the well-predicted active and passive components, these C-band and K-band MMIC amplifiers were fabricated in our lab.
關鍵字(中) ★ 微波功率放大器
★ 高速場效應電晶體
關鍵字(英) ★ Electron Beam
★ DCFET
★ HEMT
★ Power Amplifier
論文目次 TABLE OF CONTENTS
CHINESE ABSTRACT I
ABSTRACT III
FIGURE CAPTIONS XIV
TABLE CAPTIONS XV
CHAPTER 1 INTRODUCTION
1.1 Overview of Microwave GaAs Power Field Effect Transistors 1
1.2 Objective and Scope of The Present Research 3
CHAPTER 2 IMPROVEMENT OF DOPED-CHANNEL HFETS BY USING ADVANCED EPITAXY LAYER DESIGN AND FABRICATION TECHNOLOGY
2.1 Introduction 7
2.2 The Overview of Doped-Channel HFETs 8
2.3 InGaP/InGaAs Doped-Channel HFETs with A Low Parasitic Resistances by Inserting A δ-Doped Layer 10
2.3.1 Device Structure and Fabrication 11
2.3.2 Air-Bridge Technology for 1mm Gate-Width Power DCFETs 13
2.3.3 High Uniformity of Gate Recess Depth by Using RIE Process 14
2.3.4 Device dc and rf Characteristics 18
2.3.5 Device Microwave Power Performance 23
2.4 Reduced Intermodulation Distortion of AlGaAs/InGaAs Doped-Channel FETs by An Air-bridged Gate Process 26
2.4.1 Device Structures and Fabrication 27
2.4.2 Device dc and Microwave Power Performance 30
2.5 Conclusions 37
CHAPTER 3 AlGaAs/InGaAs HETEROSTRUCTURE DOPED-CHANNEL FETs EXHIBITING GOOD ELECTRICAL PERFORMANCE AT HIGH TEMPERATURES
3.1 Introduction 39
3.2 The Motivation of The Temperature Investigations on Power FETs 40
3.3 Device Structure And Fabrication 42
3.4 Device dc Characteristic Comparisons 45
3.5 Device Microwave Power Characteristics at High Temperatures 50
3.6 Conclusions 56
CHAPTER 4 NOVEL PASSIVATION AND BRIDGED TECHNOLOGY FOR POWER HFET APPLICATION BY USING A LOW-K BCB LAYER
4.1 Introduction 57
4.2 Enhanced Power Performance of Enhancement-Mode Al0.5Ga0.5As/ In0.15Ga0.85As pHEMTs Using A Low-k BCB Passivation 58
4.2.1 BCB Passivated E-Mode Al0.5Ga0.5As/ In0.15Ga0.85As pHEMTs 59
4.2.2 The Devices Characteristic Comparisons 62
4.3 High Performance BCB-Bridged AlGaAs/InGaAs Power HFETs 67
4.3.1 Device Structures and Fabrication Procedures 68
4.3.2 Device Characteristics of The Both Devices 71
4.3.3 Device Reliability Testing 76
4.4 Conclusions 77
CHAPTER 5 FABRICATION OF 0.2 mm T-SHAPED GATE InGaP/InGaAs DOPED-CHANNEL HFET USING ELECTRON BEAM LTHOGRAPHY TECHNOLOGY
5.1 Introduction 81
5.2 0.2-µm T-shaped Gate InGaP/InGaAs Doped-Channel HFETs Processed By E-beam Lithography 82
5.2.1 Low/High/Low Resist Structure and E-beam Lithography Technology 83
5.2.2 The Fabrication of 0.2 mm InGaP/InGaAs DCFET 88
5.2.3 The Characteristics of 0.2 mm InGaP/InGaAs DCFET 92
5.3 The Modified Curtice Large-Signal Model of 0.2 mm InGaP/InGaAs DCFET 96
5.3.1 Device Small-Signal Element Extraction 97
5.3.2 Device Large-Signal Model Establishment 104
5.4 Conclusions 108
CHAPTER 6 C-BAND AND K-BAND 0.2 mm T-GATE DCFET MONOLITHIC AMPLIFIER USING BCB THIN FILM TECHNOLOGY
6.1 Introduction 109
6.2 Passive BCB Inductors and Capacitors 110
6.2.1 The Lift-Off Resists (LOR) Process 110
6.2.2 The Simulation And The Fabrication of BCB Inductor 112
6.2.3 The Simulation and The Fabrication of BCB Capacitor 114
6.3 BCB C-band Power Amplifier by 0.2 mm InGaP/InGaAs DCFET 117
6.3.1 BCB C-band Power Amplifier Design 117
6.3.2 The Fabrication Process Of The C-Band Power Amplifier 118
6.3.3 C-band MMIC Power Amplifier Performance 120
6.4 BCB Coplanar Waveguide (CPW) Micorstrip Line 121
6.5 Conclusions 126
CHAPTER 7 CONCLUSIONS AND SUGGESTIONS FOR FUTURE STUDIES
7.1 Conclusions 128
7.2 Suggestions For Future Studies 130
REFERENCES 133
PUBLICATIONS 140
參考文獻 REFERENCES
[1] S. M. Sze, High speed semiconductor device, Murray Hill, New jersey.
[2] J. M. V. Hove, R. J. Schuelke, G. P. Thomes, J. D. Jorgenson, E. Y. Chang, R. M. Nagarajan, K. P. Pande, IEEE Electron Device Lett., vol. 9, pp. 530-532, 1988.
[3] M.Yanagihara, Y. Ota, K. Nishii, O. Ishikawa, A. Tamura, Electronics Lett., vol.28, pp.686-687, 1992.
[4] K. J. Chen, T. Enoki, K. Maezawa, K. Arai, M. Yamamoto, IEEE Trans. Electron Device ,vol 43, pp.252-257, 1996.
[5] D. W. Wu, R. Parkhurst, S. L. Fu, J. Wei, C. Y. Su, S. S. Chang, D. Moy, W. Fields, P. Chye, R. Levitsky. IEEE MTT-S, pp.1319 –1322, 1997.
[6] Y. L. Lai, E. Y. Chang, C. Y. Chang, T. K. Chen, T. H. Liu, S. P. Wang, T. H. Chen, C. T. Lee, IEEE Electron Device Lett., vol. 17, pp. 229-231, 1996.
[7] Y. C. Wang, J. M. Kuo, F. Ren, J. R. Lothian, J. S. Weiner, J. Lin, W. E. Mayo, Y. K. Chen, IEEE Electron Device Lett., vol. 18, pp. 550-552, 1997.
[8] M. T. Yang, and Y. J. Chan, IEEE Trans. Electron Devices, vol. 43, pp. 1174-1180, 1996.
[9] M. T. Yang, Ph.D Dissertation, National Central University, 1995.
[10] Y. J. Chan, M. T. Yang, IEEE Electron Device Lett., vol. 16, pp. 33-35, 1995.
[11] Y. S. Lin, S. S. Lu, Y. J. Wang, IEEE Electron Device Lett., vol. 16, pp. 518-520, 1995.
[12] M. Takikawa, T. Ohori, M. Takechi, M. Suzuki, and J. Komeno, J. Cryst. Growth, vol. 107, pp. 942-946, 1991.
[13] D. J. Chadi and K. J. Chang, Phys. Rev. B, vol. 39, pp. 10053-10074, 1989.
[14] Y. J. Chan, D. Pavlidis, M. Razeghi, and F. Omnes, IEEE Trans Electron Devices, ED-37,pp. 2141-2147, 1990.
[15] S.Kraus, H.Heiβ, D. Xu, M. Sexl, G. Bohm, G. Trankle and G. Weimann, Electronics Letters ,vol . 32, pp. 1619-1620, 1996.
[16] F. T. Chien, S. C. Chiol, and Y. J. Chan, IEEE Electron Device Lett. ,vol. 21, pp. 60-62, 2000.
[17] Y. C. Wang, Ph.D Dissertation, The State University of New Jersey, 1998
[18] L. S. Lai, H. C. Kao, and Y. J. Chan, Intl. Conf. on InP and Related Materials, pp. 231-234, Japan, 1998.
[19] D. R. Greenvberg and J. A. Alamo, IEEE Trans Electron Devices, vol. 43, pp. 1304-1306, 1996.
[20] R. Williams, Modren GaAs Processing Methods, Norwood : Artech House, 1990
[21] Y. C. Wang, J. M. Kuo, F. Ren, J. R. Lothian, H. S. Tsai, J. S. Weiner, H. C. Kuo, C. H. Lin, Y. K. Chen and W. E. Mayo, IEEE Trans. Electron Devices, vol. 47, pp. 1404-1412, 1999.
[22] Y. Tkachenko, A. Klimashov, C. Wei, Y. Zhao and D. Bartle, GaAs IC Symp. Tech. Dig., pp.127-130, 1999.
[23] Y. L. Lai, E. Y. Chang, C. Y. Chang, M.C. Tai, T. H. Liu, S. P. Wang, K.C. Chuang , and C. T. Lee, IEEE Electron Device Lett., vol. 18, pp. 429-431, 1997.
[24] M. Hirose, K. Nishihori, M. Nagaoka, Y. Ikeda, A. Kameyama, Y.Kitaura, and N.Uchitomi, GaAs IC Symp. Tech. Dig., pp.237-240, 1996.
[25] A. Nagayama, S. Yamauchi, and T, Hariu, IEEE Trans. Electron Devices, vol. 47, pp. 517-522, 2000.
[26] Y. J. Chan, D. Pavlidis, and G.I. Ng, IEEE Electron Device Lett., vol12, pp.360.362, 1991.
[27] D. Dieci, R. Menozzi, C. Lanzieri, L. Polenta, and C. Canali, IEEE Trans. Electron Devices, vol. 47, pp. 261-268, 2000.
[28] K.Y. Hur, and R.C. Compton, IEEE Trans. Electron Devices, vol. 40, pp. 1736-1739, 1993.
[29] N. B. de Carvalho, and J. C. Pedro, IEEE. Trans. Microwave Theory Tech., vol. 45, pp. 2364-2374, 1999.
[30] Y. S. Lin, S. S. Lu, and Y. J. Wang, IEEE Trans. Electron Devices, vol. 44, pp. 921-929, 1997.
[31] R. Quay, R. Reuter, T. Grasser, S. Selberherr, Symposium on High Performance Electron Devices for Microwave and Optoelectronic Applications, Dig., pp. 87 -92 , 1999 .
[32] J. Rodriguez-Tellez, B.P. Stothard, IEEE Trans. Electron Devices, vol. 40, pp. 1730-1735, 1996.
[33] T. Ytterdal, B.J Moon, T.A. Fjeldly, M.S. Shur, IEEE Trans. Electron Devices, vol. 42, pp. 1724-1733, 1995.
[34] M. Feng, D.R. Scherrer, P.J. Apostolakis, J.W. Kruse, IEEE Trans. Electron Devices, vol. 43, pp. 852-860, 1996.
[35] F.S. Shoucair, P. K. Ojala, IEEE Trans. Electron Devices, vol. 39, pp. 1551-1557, 1992.
[36] T. Mizutani, K. Mazawa, IEEE Electron Device Lett., vol. 12, pp. 8-10, 1992.
[37] H. Hida, A. Okamoto, H. Toyoshima, and K. Ohata, IEEE Trans. Electron Devices, vol. 34, pp. 1448-1455, 1987.
[38] W. Batty, C. E. Christoffersen, S. David, A. J. Panks, R.G. Joknson, C. M. Snowden, M. B. Steer, IEEE MTT-S, pp.667 –670, 2001.
[39] Y. C. Chou, G. P. Li, D. Leung, Z. Y. Wang, Y. C. Chen, R. Lai, C. S. Wu, R. Kono, P. H. Liu, J. Scarpulla, D. C. Streit, GaAs IC Symp. Tech. Dig., pp.165-168, 1997.
[40] S. Hiyamizu, J. Saito, K. Nanbu, T. Ishikawa, Jap. J. Appl. Phys., vol. 22, pp.609-611, 1983.
[41] R. Narasimhan, L. P. Sadwick, and R. J. Hwu, IEEE Trans. Electron Devices, vol. 46, pp. 24-31, 1999.
[42] H. Wang, G. I. Ng, M. Gilbert, and P. J. O’Sullivan, Electronics. Lett., vol. 32, pp. 2026-2027, 1996.
[43] A. Nagayama, S. Yamauchi, T. Hariu, IEEE Trans. Electron Devices, vol. 47, pp. 517-522, 2000.
[44] B. M. Green, K. K. Chu, E. M. Chumbes, J. A. Smart, J. R. Shealy, L. F. Eastman, IEEE Electron Device Lett., vol. 21, pp. 268-270, 2000.
[45] L. S. Lai, Y. J. Chan, Solid-state Electronic, vol. 41, pp.1793-1797, 1998.
[46] P. E. Garrou, W. B. Rogers, D. M. Scheck, A. J. G. Strandjord, Y. Ida, K. Ohba, IEEE Trans Advanced Packaging, pp. 487-498, 1999.
[47] Y. Bito, N. Iwata, and M. Tomita, IEEE MTT-S Dig., pp.439-442., 1998,
[48] S. Yoshida et al, IEEE MTT-S Dig., pp.1183-1186., 1999.
[49] H. S. Kim, J. H. Choi, H. M Bang, Y. Jee, S. W. Yun, J. Burm, M. D. Kim, and A. G. Choo, Electronic Lett., vol.37, pp.455-456, 2001.
[50] H. C. Chiu, S. C. Yang, F. T. Chien, and Y. J. Chan, IEEE, Electron Device Lett., vol. 23, pp. 1-3, 2002.
[51] B. Boudart, C. Gaquiere, S. Trassaert, M, Constant, A, Lorriaux, and N. Lefebvre, Appl. Phy. Lett., vol. 74, pp. 3221-3223, 1999.
[52] H. C. Chiu, M. J. Hwu, S. C. Yang, and Y. J. Chan, IEEE, Electron Device Lett., vol. 24, pp.243-245, 2002
[53] Y. C. Chou, G. P. Li, Y. C. Chen, C. S. Wu, K. K. Yu, T. A. Midford, IEEE, Electron Device Lett., vol. 17, pp.479-481, 1996
[54] Y. C. Chou, G. P. Li, K. K. Yu, P. Chu, L. D. Hou, C. S. Wu, T. A. Midford, IEEE GaAs IC Symposium Digest, pp.46-49, 1996.
[55] R. Menozzi, P. Cova, C. Canali, and F. Fantini, IEEE Trans. Electron Devices, vol. 43, pp. 543-546, 1996.
[56] P. C. Chao, M. Shur, M. Y. Kao, B. R. Lee, IEEE Trans. Electron Devices, vol. 39, pp. 738-740, 1992.
[57] N. B. de Carvalho, and J. C. Pedro, IEEE. Trans. Microwave Theory Tech., vol. 45, pp. 2364-2374, 1999.
[58] H. C. Chiu, S. C. Yang, and Y. J. Chan, IEEE Trans. Electron Device ,vol 48, pp.2210-2215, 2001.
[59] P. C. Chao, P. M. Smith, S. C. Palmateer, J. C. M. Hwang, IEEE Trans. Electron Devices, vol. 32, pp. 1042-1046, 1985.
[60] T. Enoki, Y. Ishii, T. Tamamura, Intl. Conf. on InP and Related Materials, pp. 371-376, Japan, 1991.
[61] K. H. G. Duh, P. C. Chao, S. M. J. Liu, P. Ho, M.Y. Kao, J. M Ballingall, IEEE Microwave and Guided Wave Lett, pp. 114-116, 1991.
[62] W. Curtice, M. Ettenberg. IEEE Trans. Microwave Theory Tech. pp.1383~1394, 1985.
[63] H. Statz, P. Newman, I. Smith, R. Pucel, H. Haus, IEEE Trans. Electron Devices; pp.160~169, 1987.
[64] A. Materka and T.Kacprzak. IEEE Trans. Microwave Theory Tech, pp.129~135, 1985.
[65] D. F. Kyser and N. S. Viswanathan, , J. Vac. Sci. Technol. 12(6), pp.1305-1308, 1975
[66] R. E. Howard, E. L. Hu, L. D. Jackel, IEEE Trans. Electron Devices; pp.1378~1381, 1981.
[67] Y. L. Lai, Ph.D Dissertation, National Chiao-Tung University, 1997.
[68] F. Robin, O. Homan and W. Bächtold, Intl. Conf. on InP and Related Materials, pp. 14-18, Japan, 2000.
[69] L. Tang et al, IEEE Electron Device Lett., vol. 7, pp. 75-77, 1985.
[70] R. Anholt, S. Swirhun, IEEE Trans. Microwave Theory Tech. Vol. 39 pp.1243~1247, 1991.
[71] G. Dambrine et al, IEEE Trans. Microwave Theory Tech. vol. 36, pp.1511~1519, 1988.
[72] C. K. Lin, Mater Dissertation, National Central University, 2001.
[73] M. Berroth, R. Bosch, IEEE Trans. Microwave Theory Tech. Vol. 38 pp.891~895, 1990.
[74] C. K. Lin, W. K. Wang, Y. J. Chan, Solid-State Electronics, pp. 2135-2139, 2002.
[75] M. T. Yang, Ph. D Dissertation, National Central University, 1995.
[76] C. T. Ho, Mater Dissertation, National Central University, 2000.
[77] N. Ono, Y. Fuchida, J. Onomura, M. Amano, M. Masayuki, K. Yoshihara, E. Takagi, M. Konno, IEICE Transaction. on Electronics, vol E82-C, pp.1073-1079, 1999.
[78] N. Ono, K. Yamaguchi, M. Amano, M. Sugiura, Y. Iseki, E. Takagi, IEICE Transaction. on Electronics, vol E84-C, pp.1528-1534, 2001.
[79] M. Y. Kao, S. T. Fu, P. Ho, P. M. Smith, P. C. Chao, K. J. Nordheden, S. Wang, International Electron Devices Meeting, pp.319-321, 1992.
[80] J. C. Huang, P. Saledas, J. Wendler, A. Platzker, W. Boulais, S. Shanfield, W. Hoke, P. Lyman, L. Aucoin, A. Miquelarena, C. Bedard, D. Atwood, IEEE, Electron Device Lett., vol. 17, pp.456-458, 1993
[81] O. Vendier, J. P. Fraysse, C. Schaffauser, M. Paillard, C. Drevon, J. L. Cazaux, D. Floriot, N. C.Devignes, H. Blanck, P. Auxemery, W. de Ceuninck, R. Petersen, N. Haese, P. A. Rolland, IEEE MTT-S, pp.1389 –1292, 2002.
[82] F.J. Schmückle1, A. Jentzsch1, H. Oppermann2, K. Riepe, W. Heinrich, IEEE MTT-S, pp.1393 –1396, 2002.
指導教授 詹益仁(Yi-Jen Chan) 審核日期 2003-1-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明