博碩士論文 87324028 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:30 、訪客IP:3.136.154.103
姓名 翁贊博(Tzann-Bor Weng)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 金氧半電容元件的暫態模擬之數值量測
(Numerical measurements using transient simulation in MOS-C devices)
相關論文
★ 表面電漿共振效應於光奈米元件之數值研究★ 雙載子電晶體在一維和二維空間上模擬的比較
★ 改善後的階層化不完全LU法及其在二維半導體元件模擬上的應用★ 一維雙載子接面電晶體數值模擬之驗證及其在元件與電路混階模擬之應用
★ 階層化不完全LU法及其在準靜態金氧半場效電晶體電容模擬上的應用★ 探討分離式簡化電路模型在半導體元件模擬上的效益
★ 撞擊游離的等效電路模型與其在半導體元件模擬上之應用★ 二維半導體元件模擬的電流和電場分析
★ 三維半導體元件模擬器之開發及SOI MOSFET特性分析★ 元件分割法及其在二維互補式金氧半導體元件之模擬
★ 含改良型L-ILU解法器及PDM電路表述之二維及三維元件數值模擬器之開發★ 含費米積分之高效率載子解析模型及其在元件模擬上的應用
★ 量子力學等效電路模型之建立及其對元件模擬之探討★ 適用於二維及三維半導體元件模擬的可調變式元件切割法
★ 整合式的混階模擬器之開發及其在振盪電路上的應用★ 用時域模擬法探討S參數及其應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文主要以一維等效電路模型作元件及電路的混階模擬,並針對金氧半電容(MOS-C)元件的直流、暫態與交流上的特性作一模擬分析。首先,論文將引入二極體切換電路的暫態模擬,並探討串聯電阻對整體電路的影響。其次,為了改善以往使用節點分離法來分析MIS系統的閘極邊界條件所造成的缺失;在論文中我們研究並建立SOS (Semiconductor-Oxide-Semiconductor)的模型,來探討數值模擬技巧及電荷守恆、遷移電流等之物理特性。
論文中我們設計RE(Ramp Excitation)及RSE(Ramp-Sinusoid Excitation)的方法以作為半導體元件的應用,並與CP(Charge Partition), FD(Fourier Decomposition of Transient Excitations), 及S3A(Sinusoidal Steady-State Analysis)三種數值量測的方法比較;經由RE及RSE的方法的建立,及MOS特性的C-V模型的輔助,我們可以獲得較佳的數值量測結果。進一步我們並將所設計的模型用以分析高頻和低頻的特性及深入探討MOS元件核心內部的運作機制。
最後,我們將所建立的模型,用以探討MOS元件內部非理想的成因;並在準靜態(Quasi-Static)條件下分析其Bias Sweep Rate對C-V曲線所造成偏移的現象。另一方面,在簡化二維模型設計中,藉以Fowler-Nordheim tunneling作為充放電的電流傳導機制,建立一維的浮動電極模型;內部元件參數可經由適當地調整,用以設計分析耦合係數、臨限電壓及動態時儲存/抹除記憶的動作。
摘要(英) This thesis presents an one-dimensional equivalent circuit model for mixed-level device and circuit simulation, and do an analysis for numerical measurements on MOS-C device dc, ac and transient simulation. First, the thesis will introduce the transient simulation of PN diode switching circuit, and then verify the existed series resistance effect to the switching circuit. Moreover, we study and develop SOS (Semiconductor-Oxide-Semiconductor) model to improve the imperfection of the electrode separation model for the analysis of the boundary condition in MIS (Metal-Insulator-Semiconductor) device. In SOS model, we can discuss the numerical simulation technique, charge conservation, and displacement current.
In the thesis, we develop the RE (Ramp Excitation) and RSE (Ramp-Sinusoid Excitation) methods for the semiconductor applications, and compare then to CP (Charge Partition), FD (Fourier Decomposition of Transient Excitations), and S3A (Sinusoidal Steady-State Analysis) methods for numerical measurements. Furthermore, we will recommend the RE and RSE methods with the C-V models to analyze the low-frequency and high-frequency characteristics, and investigate the phenomenon in MOS-C device to understand the operated mechanism inside it.
Finally, we will propose the model to discuss the nonideal reason of the MOS system, and the C-V curve shift due to bias sweep rate at the quasi-static condition. On the other hand, we simplify two-dimensional into one-dimensional equivalent circuit model to design the floating-gate device model using Fowler-Nordheim tunneling current for the conduction mechanism. The coupling ratio, the threshold voltage characteristics, the program and erase operation can be implemented and analyzed.
關鍵字(中) ★ 金氧半電容元件
★ MOS
關鍵字(英)
論文目次 1 Introduction 1
2 One-dimensional Mixed-level Simulation 3
2.1 Mixed-level model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ………………………3
2.2 Transient behavior and DC characteristics. . . . . . . . . . . . . . . . . . . . . . . . .. ………..6
2.3 ES (electrode separation) Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 SOS (semiconductor-oxide-semiconductor) Model . . . . . .. . . . . . . . . . . . . .11
2.5 Charge conservation. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 12
2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3 Numerical Measurement on the C-V Characteristics of MOS-C 16
3.1 Theory and Analysis. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . .16
3.2 DC simulation method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 Transient simulation method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 21
3.4 AC simulation method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.5 Comparison and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.6 Curve-fitting approximation for transient simulation. . . .. . . . . . . . . . . . 32
3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...34
4 The Advanced Application of MOS-C Device 35
4.1 Nonideal perturbation of the MOS system. . . . . . . . . . . . . . . . . . . . . . . . ... 35
4.2 Bias Sweep Rate Effect. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38
4.3 Threshold Voltage Simulation of Floating Gate devices . . . . . . . . . . . . .42
4.4 Summary . . . . . . . . . . . . . . . . . . . . .………………... . . . . . . . . . . . . . . .51
5 Conclusion 52
參考文獻 [1] Y.—T. Tsai and T.—C. Ke, “Electrode Separation method to the boundary condition for a-Si TFT Mixed-Level simulation”, Int. J. Numer.Model, vol. 11, pp.123-130, 1998.
[2] Siegfried Selberherr, “Analysis and Simulation of Semiconductor Devices”, Springer-Verlag, pp.189-190, 1984.
[3] Robert F Pierret, “Semiconductor Device Fundamentals”, Addison-Wesley, pp.679-689, 1996.
[4] Kwyro Lee, Michael Shur, Tor A. Fjeldly, and Trond Ytterdal, “Semiconductor Device Modeling for VLSI”, Prentice Hall, pp.196-229, 1993.
[5] DeWitt G. Ong, “Modern MOS Technology Processes, Devices, and Design”, Southest Book, pp.33-62, 1984.
[6] John R. Hauser, “Bias Sweep Rate Effects on Quasi-Static Capacitance of MOS Capacitors”, IEEE Transactions on Electron Devices, vol. 44, no. 6, pp. 1009-1012, 1997.
[7] M. Lenzlinger and E. H. Snow, “Fowler-Nordhiem tunneling into thermally grown SiO2”, J. Appl. Phys., vol. 40, no. 1, pp. 278-283, 1969.
[8] Z. A. Weinberg, “On thnneling in metal-dxide-silicon structures”, J. Appl. Phys., vol. 53, no. 1, pp. 5052-5056, 1982.
[9] Ching-Yuan Wu and Chiou-Feng Chen, “Physical Model For Characterizing and Simulating a FLOTOX EEPROM Device”, Solid-State Electronics, vol. 35, no. 5, pp. 705-716, 1992.
[10] Savinoam Kolodny, Sideny T. K. Nieh, Boaz Eitan, and Joseph Shappir, “Analysis and Modeling of Floating-Gate EEPROM Cells”, IEEE Transactions on Electron Devices, vol. 33, no. 6, pp. 835-843, 1986.
[11] K. Tamer San, Cetin Kaya, David K. Y. Liu, Tso-Ping Ma, and Pradeep Shah, “A New Technique for Determining the Capacitive Coupling Coefficients in FLASH EEPROM’s”, IEEE Electron Device Letters, vol. 13, no. 6, pp. 328-331, 1992.
[12] Chang-Yeol Lee, Kwyro Lee, Choong-Ki Kim, and Moon-Uhn Kim, “Variational Formulation of Poisson’s Equation in Semiconductor at Quasi-Equilibrium and Its Applications”, IEEE Transactions on Electron Devices, vol. 44, no. 9, pp. 1446-1450, 1997.
[13] Datong Chen, Satsohi Sugino, Zhiping Yu, and Robert E. Dutton, “Modeling of the Charge Balance Condition on Floating Gates and Simulation of EEPROM’s”, IEEE Transactions on Electron Devices, vol. 12, no. 10, pp. 1499-1502, 1993.
[14] Stephen Keeney, Roberto Bez, Daniele Cantarelli, Francesco Piccinini, Alan Mathewson, Leonardo Ravazzi, and Claudio Lombardi, “Complete Transient Simulation of FLASH EEPROM Devices”, IEEE Transactions on Electron Devices, vol. 39, no. 12, pp. 2750-2756, 1992.
指導教授 蔡曜聰(Yao-Tsung Tsai) 審核日期 2000-6-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明