博碩士論文 87324048 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:3.238.199.4
姓名 李明霖(Ming-Lin Lee)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 階層式模糊控制及其在倒三角體系統之應用
(Hierarchical Fuzzy Control with Applications to Seesaw Systems)
相關論文
★ 影像處理運用於家庭防盜保全之研究★ 適用區域範圍之指紋辨識系統設計與實現
★ 頭部姿勢辨識應用於游標與機器人之控制★ 應用快速擴展隨機樹和人工魚群演算法及危險度於路徑規劃
★ 智慧型機器人定位與控制之研究★ 基於人工蜂群演算法之物件追蹤研究
★ 即時人臉偵測、姿態辨識與追蹤系統實現於複雜環境★ 基於環型對稱賈柏濾波器及SVM之人臉識別系統
★ 改良凝聚式階層演算法及改良色彩空間影像技術於無線監控自走車之路徑追蹤★ 模糊類神經網路於六足機器人沿牆控制與步態動作及姿態平衡之應用
★ 四軸飛行器之偵測應用及其無線充電系統之探討★ 結合白區塊視網膜皮層理論與改良暗通道先驗之單張影像除霧
★ 基於深度神經網路的手勢辨識研究★ 人體姿勢矯正項鍊配載影像辨識自動校準及手機接收警告系統
★ 模糊控制與灰色預測應用於隧道型機械手臂之分析★ 模糊滑動模態控制器之設計及應用於非線性系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 通常在設計模糊控制器,包含獲得資料、定義控制結構、定義規則庫及其他的控制參數時,都是相當費時的。目前,有一項重要的議題就是如何減少相關模糊規則的數目,以符合計算上的需求,階層式模糊控制系統的想法因此被提出。可是,在階層化的中間階層裡,相關模糊規則可能只有些許的物理意義而導致難以去控制。而且這種現象在越多階層越明顯。
為了解決這中間階層沒有物理意義的輸出變數,本文提出一個新型式的規則庫對映方案,來求得相關規則而不必考慮其物理意義。如此,所有的規則不必再重新設計,一樣可以達到減少規則數目,而且,在多層架構中,這種對映法一樣有效。
利用電腦模擬來證實本文所提出之方法的可行性,以及說明整個設計過程。再則,對實際系統之實驗,例如倒三角體,輔以基因演算法,更加驗證了這個設計方法的有效性。由這些模擬及實驗結果顯示,本文提出的方法確實提供有效之途徑以設計階層化模糊控制系統。
摘要(英) The design of fuzzy controllers is commonly a time-consuming activity involving knowledge acquisition, definition of the controller structure, definition of rules, and other controller parameters.
At present, one of the important issues in fuzzy logic systems is how to reduce the number of involved rules and their corresponding computation requirements. The idea of hierarchical fuzzy systems (HFSs) has been reported. But, the involved fuzzy rules in the middle of the hierarchical structure have little physical meaning and consequently are hard to design. This phenomenon becomes prominent as the number of layers grows larger in an HFS.
To overcome the problem that intermediate outputs have nothing to do with the physical variables, this thesis propose a new kind of mapping rule base scheme to get the rule base of HFS without the physical meaning. As a result, all of the rule bases of fuzzy logic units (FLUs) don’t design again and we can reduce the number of involved rules. In many layers, the mapping rule is useful, equivalently.
The several simulations on computer are given to confirm the correctness and to illustrate design procedures. Moreover, Experiments on a practical system, such as an inverted wedge system, assisted with genetic algorithm, verify the effectiveness of the proposed methods. Judging from simulative and experimental results, the methods described in this provide efficient approaches to design HFSs.
關鍵字(中) ★ 階層式模糊控制
★ 倒三角體
關鍵字(英) ★ hierarchical fuzzy system
★ seesaw
論文目次 TABLE OF CONTENT
page
Abstract I
Table of Content II
List of Figures V
List of Tables VII
List of Equations VIII
CHAPTER 1 INTRODUCTION
1-1Background 1
1-2Motivation and Purpose 2
1-3Organization 2
CHAPTER 2 FUZZY CONTROL THEORY
2-1 Overview of Fuzzy Control 3
2-2 A Brief History of Fuzzy Control 4
2-3 Perspective on Fuzzy Control 5
2-3-1 The Basic Structure of the Fuzzy controller 5
2-3-2 Fuzzification 5
2-3-3 Knowledge Base 6
2-3-4 Inference Engine 7
2-3-5 Defuzzification 8
2-4 Algorithm for Design of the Fuzzy Controller 9
CHAPTER 3 HIERARCHICAL FUZZY CONTROL SCHEMES
3-1 Introduction 10
3-2 A Perspective on Hierarchical Fuzzy Control Schemes 10
3-2-1 Conventional Single Layer Fuzzy Logic Systems 10
3-2-2 Hierarchical Fuzzy Logic Systems 11
3-2-3 Structure-Hierarchical Fuzzy Logic Systems 12
3-2-4 Compare with the Result of Output for HFS
and Single Layer Fuzzy Systems 13
3-3 The Basic Concept of Limpid-HFSs 17
3-3-1 Introduction 17
3-3-2 Limpid-hierarchical Fuzzy Systems ( L-HFSs ) 18
3-3-3 Algorithm for Limpid-HFSs 21
3-3-4 Example 22
3-3-5 The constraint of the reducing number of rules 24
3-3-6 Conclusion 24
CHAPTER 4 OVERVIEW AND BRIEF HISTORY OF GENETIC ALGORITHMS
4-1 The Basic Concept of Genetic Algorithms 25
4-2 The History of Genetic Algorithms 25
4-3 The Advantages of Genetic Algorithms 26
4-4 Perspective on Genetic Algorithms 26
4-4-1 Reproduction 26
4-4-2 Crossover 29
4-4-3 Mutation 30
4-5 Fitness Function 31
CHAPTER 5 SIMULATION
5-1 Introduction 32
5-2 System Model 32
5-2-1 Physical Concept 32
5-2-2 Dynamical Equation 32
5-3 Random Self-Tuning for Scaling Factors 34
5-4 The Fuzzy Controller for Simulation 35
5-5 The Result for Simulation 36
5-5-1 Simulation 1 38
5-5-2 Simulation 2 39
5-5-3 Simulation 3 40
5-5-4 Simulation 4 41
5-5-5 Simulation 5 42
CHAPTER 6 EXPERIMENTAL RESULTS AND DISCUSSIONS
6-1 The Seesaw Mechanism ( The Unstable Plant ) 43
6-1-1 The Concept of Seesaw Fundamentals 43
6-1-2 The Practical Hardware 44
6-2 The Design of the Fuzzy Controller 46
6-2-1 The System State Variables 46
6-2-2 The Rules of the Conventional Fuzzy Controller 47
6-2-3 The Fuzzy Set Definitions of the Fuzzy Variables 51
6-2-4 The Fuzzy Reasoning Method 52
6-2-5 The Defuzzification Algorithm 52
6-3 The Design of the HFS 52
6-3-1 The Structure of HFS 52
6-3-2 The Rules of the Conventional Fuzzy Controller 53
6-4 The Self-Tuning by GA 54
6-4-1 The Performance-Oriented Objective Function for GA54
6-4-2 The Self-Tuning for the Rule Base 55
6-4-3 The Self-Tuning for the Membership Functions 55
6-5 Experimental Results 56
6-6 Matlab Control in Direct 56
CHAPTER 7 CONCLUSIONS AND RECOMMENDATIONS 58
REFERENCES 59
參考文獻 References
[1] L. A. Zadeh, “Fuzzy Sets”, Information and Control, vol.
8, no. 3, pp. 338-353, 1965.
[2] G. J. Klir and B. Yuan, “Fuzzy Sets and Fuzzy Logic theory
and Applications”, Prentice Hall PTR publishing house, New
Jersey, 1995.
[3] W. J. Wang, “To Recognize of Fuzzy”, Chun-Hua science and
technology publishing house, Taiwan, 1997.
[4] G. V. S. Raju, J. Zhou, and R. A. Kisner, “Hierarchical
fuzzy control”, Int. J. Contr., vol. 54, no. 5, pp. 1201-
1216, 1991.
[5] G. V. S. Raju and J. Zhou, “Adaptive Hierarchical Fuzzy
Controller”, IEEE Transactions on Systems, Man, and
Cybernetics, vol. 23, no. 4, pp. 973-980, 1993.
[6] R. Ronald, “On the Construction of Hierarchical Fuzzy
Systems Models”, IEEE Transactions on Systems, Man, and
Cybernetics, vol. 28, no. 1, pp. 55-66, 1998.
[7] L. X. Wang, “Universal approximation by hierarchical fuzzy
systems”, Fuzzy Sets and systems 93, pp. 223-230, 1998.
[8] H. Kikuchi, A. Otake, and S. Nakanishi, “Functional
Completeness of Hierarchical Fuzzy Modeling”, Information
Sciences, vol. 110, pp. 51-60, 1998.
[9] D. A. Linkens and H. Okola Nyongesa, ”A Hierarchical multi- variable fuzzy controller for learning with genetic
algorithms”, Int. J. Contr., vol. 63, no. 5, pp. 855-883,
1996.
[10]K. Shimojima, T. Fukuda, and Y. Hasegawa, “Self-tuning
fuzzy modeling with adaptive membership function, rules,
and hierarchical structure based on genetic algorithm”,
Fuzzy Sets and systems 71, pp. 295-309, 1995.
[11]M. G. Joo and J. S. Lee, “Hierarchical Fuzzy Control
Scheme using Structured Takagi-Sugeno Type Fuzzy
Inference”, Proc. IEEE International Conference on Fuzzy
Systems, pp. 78-83, 1999.
[12]P. Siarry and F. Guely, “A genetic algorithm for
optimizing Takagi-Sugeno fuzzy rule bases”, Fuzzy Sets and
systems 99, pp. 37-47, 1998.
[13]T. H. S. Li and M. Y. Shieh, “Design of a GA-based fuzzy
PID controller for non-minimum phase systems”, Fuzzy Sets
and Systems 111, pp. 183-197, 2000.
[14]H. B. Gurocak, “A genetic-algorithm-based method for
tuning fuzzy logic controllers”, Fuzzy Sets and systems
108, pp. 39-47, 1999.
[15]C. S. Chen and W. L. Chen, “Analysis and Design of
Uncertain Nonlinear Systems using Fuzzy Control Logic”,
Power Mechanical Engineering, NTHU, 1996.
[16]B. J. Choi, S. W. Kwak, and B. K. Kim, “Design of a single-
input fuzzy logic controller and its properties”, Fuzzy
Sets and systems 106, pp. 299-308, 1999.
[17]J. S. Glower and J. Munighan, “Designing Fuzzy Controllers
from a Variable Structures Standpoint”, IEEE Transactions
on Fuzzy Systems, vol. 5, no. 1, pp. 138-144, 1997.
指導教授 鍾鴻源(Hung-yuan Chung) 審核日期 2000-7-5
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明