博碩士論文 87324054 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:54.162.151.77
姓名 陳士元(Shi-Yuan Chen)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 模糊滑動模態控制器之設計及應用於非線性系統
(Design of Fuzzy Sliding Mode Controller with Applications to Nonlinear Systems)
相關論文
★ 影像處理運用於家庭防盜保全之研究★ 適用區域範圍之指紋辨識系統設計與實現
★ 頭部姿勢辨識應用於游標與機器人之控制★ 應用快速擴展隨機樹和人工魚群演算法及危險度於路徑規劃
★ 智慧型機器人定位與控制之研究★ 基於人工蜂群演算法之物件追蹤研究
★ 即時人臉偵測、姿態辨識與追蹤系統實現於複雜環境★ 基於環型對稱賈柏濾波器及SVM之人臉識別系統
★ 改良凝聚式階層演算法及改良色彩空間影像技術於無線監控自走車之路徑追蹤★ 模糊類神經網路於六足機器人沿牆控制與步態動作及姿態平衡之應用
★ 四軸飛行器之偵測應用及其無線充電系統之探討★ 結合白區塊視網膜皮層理論與改良暗通道先驗之單張影像除霧
★ 基於深度神經網路的手勢辨識研究★ 人體姿勢矯正項鍊配載影像辨識自動校準及手機接收警告系統
★ 模糊控制與灰色預測應用於隧道型機械手臂之分析★ 階層式模糊控制及其在倒三角體系統之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文將探討對非線性系統的模糊滑動模態控制器之設計。我們使用滑動模態控制原則對系統的穩定性來提供引導設計一個模糊控制器。然而、在建立模糊控制規則中可能因為控制規則過多而難以建立。因此、我們提出一個新的方法稱為單輸入類似模糊滑動模態控制方法來簡化模糊控制規則。如此、在產生及調適控制規則上將會更容易。最後、我們使用分解方法去結合所提出的單輸入類似模糊滑動模態控制。藉由一些舉例的模擬結果,我們可以發現所提出的方法會使非線性系統的性能響應能滿足我們的控制目的。
摘要(英) In this thesis, we will discuss the design of fuzzy sliding mode controller for nonlinear systems. We use the sliding mode control (SMC) principle to provide the guidance to design a fuzzy controller for system stability. However, establishing the fuzzy control rules may be too large to implement. Hence, we will propose a new method called single-input quasi fuzzy sliding mode control (SQ-FSMC) to reduce the fuzzy control rules. So, generations and tuning of control rules will be easier. Finally, we will use the decouple method to combine the SQ-FSMC. From the simulation results, it is found that the proposed method makes the performance response of nonlinear systems satisfy our control purpose.
關鍵字(中) ★ 滑動模態控制
★ 模糊控制
★ 模糊滑動模態控制
關鍵字(英) ★ Sliding Mode Control
★ Fuzzy Control
★ Fuzzy Sliding Mode Control
論文目次 Abstract Ⅰ
Table of Content Ⅱ
List of Figures Ⅳ
List of Tables Ⅵ
Chapter Page
Chapter 1 Introduction 1
1.1 Background 1
1.2 Motivation 2
1.3 Organization 3
Chapter 2 Fuzzy-Sliding Mode Controller Design for Uncertain Time-Delayed Systems with Nonlinear Input 4
2.1 Introduction 4
2.2 System Statement 5
2.3 Variable Structure Control Design 8
2.4 Fuzzy Sliding Mode Control 11
2.5 Simulations 15
2.6 Conclusions 18
Chapter 3 A New Stability Approach to A Single-Input Fuzzy Control Design for Nonlinear Systems 20
3.1 Introduction 20
3.2 System Description and Fuzzy Sliding Mode Control 21
3.2.1 System Statement 21
3.2.2 Fuzzy Sliding Mode Control 22
3.3 Design of Single-Input Quasi-FSMC 25
3.4 Numerical Simulations28
3.5 Conclusions 33
Chapter 4 Decoupled Fuzzy Controller Design with Single-Input Fuzzy Logic Standpoint 35
4.1 Introduction 35
4.2 System Description 36
4.3 Sign Distance Fuzzy Logic Control 37
4.4 Design of Decoupled Fuzzy Logic Controller 40
4.5 Computer Simulations 42
4.6 Conclusions 48
Chapter 5 Conclusions and Recommendations 49
List of Figures
Page
Fig. 2.1 Series nonlinearity in a single input case 7
Fig. 2.2 The block diagram of the FCMC 12
Fig. 2.3 Fuzzy variable of triangular type 12
Fig. 2.4 State variable dynamics for the system under VSC: and 16
Fig. 2.5 The phase plane between and : ( ) under the VSC 16
Fig. 2.6 State variable dynamics for the system under FSMC: and 17
Fig. 2.7 The phase plane between and : ( ) under the FSMC 18
Fig. 3.1 The block diagram of the FSMC 23
Fig. 3.2 Fuzzy variable of triangular type 23
Fig. 3.3 Derivation of a signed distance 25
Fig. 3.4 The block diagram of the SQ-FSMC 27
Fig. 3.5 Diagram of an inverted pendulum 29
Fig. 3.6(a) Time response of of FSMC 30
Fig. 3.6(b) Time response of of SQ-FSMC 31
Fig. 3.7(a) Time response of with disturbance of FSMC 31
Fig. 3.7(b) Time response of with disturbance of SQ-FSMC 32
Fig. 3.8(a) State trajectory of FSMC 32
Fig. 3.8(b) State trajectory of SQ-FSMC 33
Fig. 4.1 Derivation of a signed distance 37
Fig. 4.2 Fuzzy variable of triangular type 39
Fig. 4.3 The block diagram of the SDFLC 39
Fig. 4.4 The block of the decoupled SDFLC 40
Fig. 4.5 Structure of an inverted pendulum system 42
Fig. 4.6 Angle evolution of the pole 44
Fig. 4.7 Position evolution of the cart 44
Fig. 4.8 Control output of Example 1 45
Fig. 4.9 Structure of a ball-beam system 45
Fig. 4.10 Angle evolution of the beam 47
Fig. 4.11 Position evolution of the ball 47
Fig. 4.12 Control output of Example 2 48
List of Tables
Page
Table 2.1 Rule table of FSMC 13
Table 2.2 Look-up table of FSMC 14
Table 3.1 Rule table of FSMC 24
Table 3.2. Rule table for SQ-FSMC 28
Table 4.1. Rule table for sign distance fuzzy logic control 39
參考文獻 [1] E.H. Mamdani, " Applications of fuzzy algorithms for simple dynamic plants," Proc. IEE 121 1974, pp. 1585-1588.
[2] Kou-Cheng Hsu, " Adaptive variable structure control design for uncertain time-delayed systems with nonlinear input," Dynamics and Control. 8, 1998, pp. 341-354.
[3] Guang-Chyan Hwnag, Shih-Chang Lin, " A stability approach to fuzzy control design for nonlinear systems," Fuzzy Sets and Systems vol. 48 1992, pp. 279-287.
[4] Hamid Allamehzadeh, John Y. Cheung, " Design of a stable and robust fuzzy controller for a class of nonlinear system," Proceedings of the fifth IEEE International Conference on Published vol. 3, 1996, pp. 2150-2154.
[5] Chung-Chun Kung, Chia-Chang Liao, " Fuzzy-sliding mode controller design for tracking control of non-linear system," Proceedings of the American Control Conference, June 1994, pp. 180-184.
[6] Byung-Jae Choi, Seong-Woo Kwak, Byung Kook Kim, " Design of a single-input fuzzy logic controller and its properties," Fuzzy Sets and Systems vol. 106 1999, pp.299-308.
[7] V. I. Utkin, K. D. Young, " Methods for constructing discontinuity planes in multidimensional variable structure systems, " Automation Remote Control, vol. 39 1979, pp. 1466-1470.
[8] Rajani K. Mudi, Nikhil R. Pal, " A robust self-tuning scheme for PI- and PD-type fuzzy controllers, " IEEE Transactions on Fuzzy Systems, vol. 7. No. 1. February 1999, pp. 2-16.
[9] Sung-Woo Kim, Ju-Jang Lee, " Design of a fuzzy controller with fuzzy sliding surface," Fuzzy Sets and Systems vol.71 1995, pp. 359-367.
[10] Jacob S. Glower, Jeffrey Munighan, " Design Fuzzy Controllers from a Variable Structures Standpoint," IEEE Transactions on Fuzzy Systems, vol. 5. No. 1. February 1997, pp. 138-144.
[11] Ji-Chang Lo, Ya-Hui Kuo, " Decouoled Fuzzy Sliding-Mode Control," IEEE Transactions on Fuzzy Systems, vol. 6. No. 3. August 1998, pp. 426-435.
[12] Q. P. HA, D.C. RYE, H. F. DURRANT-WHYTE, " Robust sliding mode control with application," International Journal of Control, vol. 72. No. 12. 1999, pp. 1087-1096.
[13] Xinghuo Yu, Zhihong Man, Baolin Wu, " Design of fuzzy sliding-mode control systems," Fuzzy Sets and Systems vol.95 1998, pp. 295-306.
[14] Andrzej Bartoszewicz, " A new reaching law for discrete-time variable structure systems," Proceedings of the 36th Conference on Decision & Control San Diego, California USA. December 1997, pp.4044-4045.
[15] Wen-Jer Chang, " Common Observability Gramian Assignment Using Discrete Fuzzy Control," 1999 IEEE International Fuzzy Systems Conference Proceedings Seoul Korea August 22-25, 1999, pp.84-89.
[16] Katsuhisa FURUTA, " Sliding mode control of a discrete system," Systems & Control Letters vol. 14. 1990, pp.145-152.
[17] Weibing Gao, " Discrete-Time Variable Structure Control Systems," IEEE Transactions on Industrial Electronics, vol. 42. No. 2. April 1995, pp. 117-122.
[18] Andrzej Bartoszewicz, " Remarks on Discrete-Time Variable Structure Control Systems," IEEE Transactions on Industrial Electronics, vol. 43. No. 1. February 1996, pp. 235-238.
指導教授 鍾鴻源(Hung-yuan Chung) 審核日期 2000-6-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明