博碩士論文 87325026 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:3 、訪客IP:34.204.173.45
姓名 王培儀(Pei-Yi Wang)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 利用欄位群聚特徵和四個方向相鄰樹作表格文件分類
(Table-Form Classification Using Field Clustering Features and Four Directional Adjacency Trees)
相關論文
★ 使用視位與語音生物特徵作即時線上身分辨識★ 以影像為基礎之SMD包裝料帶對位系統
★ 手持式行動裝置內容偽變造偵測暨刪除內容資料復原的研究★ 基於SIFT演算法進行車牌認證
★ 基於動態線性決策函數之區域圖樣特徵於人臉辨識應用★ 基於GPU的SAR資料庫模擬器:SAR回波訊號與影像資料庫平行化架構 (PASSED)
★ 利用掌紋作個人身份之確認★ 利用色彩統計與鏡頭運鏡方式作視訊索引
★ 筆劃特徵用於離線中文字的辨認★ 利用可調式區塊比對並結合多圖像資訊之影像運動向量估測
★ 彩色影像分析及其應用於色彩量化影像搜尋及人臉偵測★ 中英文名片商標的擷取及辨識
★ 利用虛筆資訊特徵作中文簽名確認★ 基於三角幾何學及顏色特徵作人臉偵測、人臉角度分類與人臉辨識
★ 一個以膚色為基礎之互補人臉偵測策略★ 利用指紋紋路分佈順序及分佈模型作指紋自動分類
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來,辦公室自動化已成為時代的潮流。其中,自動文件處理系統在辦公室自動化中佔了不可或缺的地位。在辦公室中,被處理的文件種類相當繁多,其中以表格文件佔絕大多數,並且被廣泛的使用。因此,表格文件分類更是在自動文件處理系統中扮演著一重要之角色。
本篇論文提出了一個分類表格文件的新方法,並且對此方法做了深入的介紹。這個方法主要以表格文件中的欄位當作基礎特徵。因此,首先我們必須先抽取出所有的表格線,接著再利用表格線間相交的關係和左上角-右下角配對演算法將表格中所有的欄位取出。在所有的欄位被抽取出來之後,再從這些欄位中擷取出兩種展現欄位間相互關係的特徵來當作比對的依據,即欄位群聚特徵和方向相鄰樹特徵。表格文件的分類即是利用此兩種特徵與資料庫中現有的樣本文件作比對來達成。實驗結果將驗證我們所提的表格分類方法確實可行。
摘要(英) Office automation has become a trend during recent years. Many techniques have been proposed to achieve the goal of office automation. Among those techniques, automatic document processing is one of the most improtant one. In office, there are various kinds of documents to be processed. Most of them are table-form documents and are extensively used in different applications. Table-form classification thereby plays an important role in automatic document processing system.
In this thesis, we will present a novel mehtod for recognizing table-form documents. This method adopts the fields in the table-form document as the primary feautre for table-form classification. In our system, we have to extract all table-lines first and then utilize the line-crossing relation matrix and the corner-pair searching algorithm to extract all fields embedded in the table-form document. After that, we will extract two specific and useful features, i.e. the field clustering feature and the four directional adjacency trees (FDAT), which represent the interrelationship between the fields, to serve as the matching basis of the classification system. Last, the recognition of the table-form is achieved by using these two features to compare against a stored table-form library. Experimental results demonstrate the feasibility and the validity of our proposed system in recognizing table-form documents.
關鍵字(中) ★ 方向相鄰樹
★ 欄位抽取
★ 線條抽取
★ 表格文件分類
★ 群聚
關鍵字(英) ★ four directional adjacency trees
★ field extraction
★ line extraction
★ table-form classification
★ clustering
論文目次 CHAPTER 1 INTRODUCTION
1.1 Motivation
1.2 Related Works
1.3 System Overview
1.4 Organization of Thesis
CHAPTER 2 TABLE-LINE EXTRACTION
2.1 Run-based Line Extraction
2.1.1 Definition of Run and Subline
2.1.2 Determination of Limiting Parameters
2.1.3 Rules of Connection Method
2.1.4 Estimation of Thin-long Oblon
2.1.5 Algorithm of Run-based Line Extraction
2.2 Non-table-line Elimination
2.3 Experimental Results
CHAPTER 3 FIELD EXTRACTION
3.1 Line-crossing Relation Matrix
3.1.1 Types of Line-crossing Relation
3.1.2 Determination of Line-crossing Relation Type
3.1.3 Generation of Line-crossing Relation Matrix
3.2 Corner-pair Searching Algorithm
3.3 Discussion of Field Extraction Failure
CHAPTER 4 FEATURE EXTRACTION
4.1 Field Clustering
4.1.1 Cluster Seeking
4.1.2 Encoding of Clustering Result
4.2 Four Directional Adjacency Trees (FDAT)
4.2.1 Definition of Four Directional Adjacency Trees
4.2.2 Generation of Four Directional Adjacency Trees
CHAPTER 5 TABLE-FORM RECOGNITION
5.1 Matching Process of Table-Form
5.1.1 Matching of Clustering Code
5.1.2 Matching of FDATs
5.2 Experimental Results
5.2.1 Experiment Ⅰ
5.2.2 Experiment Ⅱ
CHAPTER 6 CONCLUSIONS AND FUTURE WORKS
6.1 Conclusions
6.2 Feature Works
REFERENCE
APPENDIX A
APPENDIX B
參考文獻 [1] Antoine Ting and Maylor K.H. Leung, “Form Recognition Using Linear Structure,” in Pattern Recognition, Vol. 32, pp. 645-646, 1999.
[2] Ren-Jean Liou and Mu-Song Chen, “Recognition of Table-form Documents Using High Order Correlation Method,” in Proceedings of the 1998 IEEE International Joint Conference on Neural Networks, Vol. 3, pp. 1851-1856, 1998.
[3] Chi-Fang Lin and Cheng-Yi Hsiao, “Structural Recognition for Table-form Documents Using Relaxation Techniques,” in International Journal of Pattern Recognition and Artificial Intelligence, Vol. 12, No. 7, pp. 985-1005, 1998.
[4] Lin-Yu Tseng and Rung-Ching Chen, “Recognition and Data Extraction of Form Documents Based on Three Types of Line Segments”, in Pattern Recognition, Vol. 32, No. 10, pp. 1525-1540, 1998
[5] Shigeyoshi Shimotsuji and Mieko Asano, “Form Identification based on Cell Structure,” in Proceedings of ICPR ’96, pp. 793-797, 1996.
[6] Toyohide Watanabe, Qin Luo and Noboru Sugie, “Layout Recognition of Multi-Kinds of Table-Form Documents,” in IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 17, No. 4, pp. 432-445, 1995.
[7] 盧鎮明,“利用特徵圖比對法作表格文件之辨識,”國立中央大學資訊工程研究所碩士論文, 1995.
[8] Antoine Ting, Maylor K. Leung, Siu-Cheung Hui and Hai-Yun Chan, “ A Syntactic Business Form Classifier,” in Proceedings of the Third International Conference on Document Analysis and Recognition, Vol. 1, pp. 301-304, 1995.
[9] Toyohide Watanabe and Qin Luo, “A Multilayer Recognition Method for Understanding Table-Form Documents,” in International Journal of Imaging Systems and Technology, Vol. 7, pp. 279-288, 1996.
[10] Yuki Hirayama, “A Method for Table Structure Analysis Using DP Matching,” in Proceedings of the Third International Conference on Document Analysis and Recognition, Vol. 2, pp. 583-586, 1995.
[11] Osamu Hori and David S. Doermann, “Robust Table-form Structure Analysis Based on Box-Driven Reasoning,” in Proceedings of the Third International Conference on Document Analysis and Recognition, Vol. 1, pp. 218-221, 1995.
[12] E. Green and M. Krishnamoorthy, “Model-Based Analysis of Printed Tables,” in Proceedings of the Third International Conference on Document Analysis and Recognition, Vol. 1, pp. 214-217, 1995.
[13] Francesca Cesarini, Marco Gori, Simone Marinai, and Giovanni Soda, “INFORMys: A Flexible Invoice-Like Form-Reader System,” in IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 20, No. 7, pp. 730-745, 1998.
[14] John H. Shamilian, Henry S. Baird and Thomas L. Wood, “A Retargetable Table Reader,” in Proceedings of the Fourth International Conference on Document Analysis and Recognition, Vol. 1, pp. 158-163, 1997.
[15] Yuan F. Arias, Atul Chhabra and Vishal Misra, “Interpreting and Representing Tabular Documents,” in Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 600-605, 1996.
[16] Jiun-Lin Chen and His-Jian Lee, “An Efficient Algorithm for Form Structure Extraction Using Strip Projection,” in Pattern Recognition, Vol. 31, N0. 9, pp. 1353-1368, 1998.
[17] Arturo Pizano, “Extracting Line Features from Images of Business Forms and Table,” in Proceedings of 11th IAPR International Conference on Pattern Recognition, Vol. III, pp. 399-403, 1992.
[18] Kuo-Chin Fan, Jeng-Ming Lu and Jing-Yuh Wang, “A Feature Point Clustering Approach to the Segmentation of Form Documents,” in Proceedings of the Third International Conference on Document Analysis and Recognition, Vol. 2, pp. 623-626, 1995.
[19] Y. Belaid, A. Belaid and E. Turolla, “Item Searching in Forms: Application to French Tax Form,” in Proceedings of the Third International Conference on Document Analysis and Recognition, Vol. 2,pp. 744-747, 1995.
[20] 王亮盛,“利用文件分析作文件之無失真重現,”國立中央大學資訊工程研究所博士論文, 1997.
[21] 張美齡,“以線條結構分析為基礎之表格文件分類法,”國立中央大學資訊工程研究所碩士論文, 1997.
[22] Hiroshi Shinjo, Kazuki Nakashima, Masashi Koga, Katsumi Marukawa, Yoshihiro Shima and Eiichi Hadano, “A Method of Connecting Disappeared Junction Patterns on Frame Lines in Form Documents,” in Proceedings of the Fourth International Conference on Document Analysis and Recognition, Vol. 2, pp. 667-670, 1997.
[23] Jianxing Yuan, Yuan Y. Tan and Ching Y. Suen, “Four Directional Adjacency Graphs (FDAG) and Their Application in Locating Fields in Forms,” in Proceedings of the Third International Conference on Document Analysis and Recognition, Vol. 2, pp.752-755, 1995.
指導教授 范國清(Kuo-Chin Fan) 審核日期 2000-7-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明