博碩士論文 87325029 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:29 、訪客IP:3.83.192.109
姓名 王嘉銘(Chia-Ming Wang)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 利用可調式區塊比對並結合多圖像資訊之影像運動向量估測
(Multi-frame Motion Estimation Using Adaptive Block Matching)
相關論文
★ 使用視位與語音生物特徵作即時線上身分辨識★ 以影像為基礎之SMD包裝料帶對位系統
★ 手持式行動裝置內容偽變造偵測暨刪除內容資料復原的研究★ 基於SIFT演算法進行車牌認證
★ 基於動態線性決策函數之區域圖樣特徵於人臉辨識應用★ 基於GPU的SAR資料庫模擬器:SAR回波訊號與影像資料庫平行化架構 (PASSED)
★ 利用掌紋作個人身份之確認★ 利用色彩統計與鏡頭運鏡方式作視訊索引
★ 利用欄位群聚特徵和四個方向相鄰樹作表格文件分類★ 筆劃特徵用於離線中文字的辨認
★ 彩色影像分析及其應用於色彩量化影像搜尋及人臉偵測★ 中英文名片商標的擷取及辨識
★ 利用虛筆資訊特徵作中文簽名確認★ 基於三角幾何學及顏色特徵作人臉偵測、人臉角度分類與人臉辨識
★ 一個以膚色為基礎之互補人臉偵測策略★ 利用指紋紋路分佈順序及分佈模型作指紋自動分類
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在電腦視覺的領域中,運動估測與偵查是一個有趣而重要的主題。許多的運動估測方法都以計算光流場開始,但是,我們也都了解,傳統的光流估測演算法具有雜訊而且正確性低。
為了獲得更正確的光流估測,我們初步的觀念是認為盡可能利用多張影像資訊。在結合多圖像資訊的光流估測法中,我們採用以相關性為基礎的方法來實作,並且提出兩種不同的方案:一為以參考影像為主的方法,二為遞增法。在實驗當中,我們採用等速度運動的光流模組。對於光流偵測來說,求到子像素的精確度是相當有必要的。我們採用雙線性內插法及三步偵測的搜尋法。最後,我們利用可調式的區塊選擇來做樣板比對。選擇可調式區塊,是採用亮度差值累計法。在實驗結果中,我們可以清楚看到效果的改善。
摘要(英) Motion estimation and detection is an important and interesting topic in computer vision. Many motion estimation approaches start from the computation of optical flow. However, it is well known that the optical flow vectors estimated with the conventional methods are usually quite noisy and inaccurate.
To obtain more accurate optical flow estimation of an image, our basic idea is to use as much information as possible contained in a number of image frames. In this thesis, we use the correlation-based method. Two different approaches called the reference-frame approach and the incremental approach are used in estimating multi-frame optical flow. We adopt the constant velocity flow model in all of our work. Moreover, sub-pixel refinement is necessary for every estimations. Bilinear interpolation and three-step searching are used in sub-pixel refinement. Finally, we device the adaptive window selection scheme in template matching. The adaptive windows are selected with an efficient algorithm which is called the difference accumulation algorithm. The accuracy improvement is demonstrated in our experimental results.
關鍵字(中) ★ 多圖像
★ 移動偵測
★ 光流偵測
★ 可調式區塊
★ 區塊比對
★ 子像素
關鍵字(英) ★ sub-pixel
★ motion estimation
★ optical flow
★ adaptive window
★ block matching
★ multi-frame
論文目次 CHAPTER 1 INTRODUCTION1
1.1MOTIVATION1
1.2RELATED WORKS3
1.3ORGANIZATION OF THESIS6
CHAPTER 2 MULTI-FRAME OPTICAL FLOW ESTIMATION7
2.1 CORRELATION-BASED METHOD7
2.1.1 Reference-frame Approach8
2.1.2 Incremental Difference Approach9
2.1.3 Comparison9
2.2 DIFFERENT MOTION MODELS11
2.2.1 Constant Velocity Motion Model12
2.2.2 Constant Acceleration Motion Model13
2.2.3 Affine Motion Model14
2.3 SUB-PIXEL BLOCK MATCHING15
2.3.1 Interpolation16
2.3.2 Searching Strategy19
CHAPTER 3 TEMPLATE MATCHING BY ADAPTIVE WINDOW SELECTION22
3.1 ADAPTIVE WINDOW SELECTION USING TOBOGGAN SEGMENTATION24
3.2 ADAPTIVE WINDOW SELECTION USING DIFFERENCE ACCUMULATION METHOD29
3.3 EXPERIMENTAL RESULTS34
CHAPTER 4 EXPERIMENTAL RESULTS40
4.1 EXPERIMENT 1: MULTI-FRAME OPTICAL FLOW ESTIMATION40
4.2 EXPERIMENT 2: DIFFERENT SUB-PIXEL PRECISION LEVEL ESTIMATION47
4.2.1 Error Analysis47
4.2.2 Pixel-Level Estimation Using Synthetic Images of Pixel-Level Motion47
4.2.3 Different Sub-Pixel Level Estimation Using Synthetic Images of Sub-Pixel Level Motion50
4.3 EXPERIMENT 3: ADAPTIVE WINDOW EFFECTS51
CHAPTER 5 CONCLUSIONS AND FUTURE WORKS55
5.1 CONCLUSIONS55
5.2 FUTURE WORKS55
REFERENCES57
參考文獻 References
[1] B. K. P. Horn and B. G. Schunck, “Determining Optical Flow”, Artificial Intelligence, vol. 17, pp.185-203, Aug. 1981.
[2] B. Lucas and T. Kanade, “An iterative image registration technique with an application to stereo vision”, DARPA Image Understanding Workshop, pp.121-130, 1981.
[3] M. J. Black and P. Anandan, “Robust Dynamic Motion Estimation over Time”, Computer Vision and Pattern Recognition, pp.296-302, 1991.
[4] M. Irani, “Multi-frame Optical Flow Estimation Using Subspace Constraints”, International Conference on Computer Vision, pp.626-633, 1999.
[5] J. L. Barron, D. J. Fleet, S. S. Beauchemin, and T. A. Burkitt, “Performance of Optical Flow Techniques”, Computer Vision and Pattern Recognition, pp.236-242, 1992.
[6] S. H. Lai and B. C. Vemuri, “Reliable and Efficient Computation of Optical Flow”, International Journal of Computer Vision 29(2), pp.87-105, 1998.
[7] J. L. Barron, D. J. Fleet, and S. S. Beauchemin, “Performance of Optical Flow Techniques”, International Journal of Computer Vision 12(1), pp.43-77, 1994.
[8] John Y. A. Wang and E. H. Adelson, “Representing Moving Images With Layers”, IEEE Trans. on Image Processing, vol. 3, no.5, pp. 625-638, Sep. 1994.
[9] F. Bartolini and A. Piva, “Median based relaxation of smoothness constraints in optical flow computation”, Pattern Recognition Letters 18, pp. 649-655, 1997.
[10] T. Koga, K. Iinuma, A.Hirano, Y.Iijima, and T. Ishiguro, “Motion-Compensated interframe coding for video conferencing”, Nippon Electric Co. Ltd., Kawasaki, Japan, 1981.
[11] N. Ohta and K.Kanatani, “Moving Object Detection from Optical Flow without Empirical Thresholds”, IEICE trans. of Inf. & System., pp.243-245, 1998.
[12] Harpreet S. Sawhney, Y. Guo, J. Asmuth and R. Kumar, “Independent Motion Detection in 3D scenes”, International Conference on Computer Vision, pp.612-619, 1999.
[13] G. Csurka and P. Bouthemy, “Direct Identification of Moving Object and Background from 2D Motion Models”, International Conference on Computer Vision, pp.566-571, 1999.
[14] X. Yao and Y. Hung, “Keep-Sliding Toboggan Segmentation”, Institute of Information Science, Academia Sinica, Taipei, Taiwan.
[15] T. Kanade and M. Okutomi, “A Stereo Matching Algorithm with an Adaptive Window: Theory and Experiment”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 16, No.9, pp.920-932, 1994.
[16] P. Anandan, “A Computational Framework and an Algorithm for the Measurement of Visual Motion”, International Journal of Computer Vision, 2, pp. 283-310, 1989.
[17] H. Huang, C. Kao, Y. Lin, and Y. Hung, “Disparity-Based View Interpolation for Multiple Perspective Stereoscopic Displays”, Proceedings of SPIE, vol. 3957, pp.102-113, 2000.
[18] H. Huang, Y. Lin, Y. Hung and C. Fuh, “New Video Object Segmentation Technique Based on Flow-Thread Features for MPEG-4 and Multimedia Systems”, Proceedings of SPIE, vol. 3974, pp.204-212, 2000.
[19] Y. Chen, Y. Hung and C. Fuh, “A Fast Block Matching Algorithm Based on the Winner-Update Strategy”, Proceedings of the Fourth Asian Conference on Computer Vision, vol. 2, pp. 977-982, 2000.
[20] R. C. Gonzalez and R. E. Woods, Digital Image Processing, Addison-Wesley Publishing Company, 1992.
[21] C. F. Gerald and P. O. Wheatley, Applied Numerical Analysis, Addison-Wesley Publishing Company, 1994.
[22] J. Fairfield, “Toboggan Contrast Enhancement for Contrast Segmentation”, In Proceedings of IEEE Computer Vision and Pattern Recognition, pp.712-716, 1990.
指導教授 范國清、洪一平(Kuo-Chin Fan) 審核日期 2000-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明