博碩士論文 87325052 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:3.81.28.94
姓名 鄭旭良(Hsu-Liang Cheng)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 利用掌紋作個人身份之確認
(Personal Identification Using Palm Prints)
相關論文
★ 使用視位與語音生物特徵作即時線上身分辨識★ 以影像為基礎之SMD包裝料帶對位系統
★ 手持式行動裝置內容偽變造偵測暨刪除內容資料復原的研究★ 基於SIFT演算法進行車牌認證
★ 基於動態線性決策函數之區域圖樣特徵於人臉辨識應用★ 基於GPU的SAR資料庫模擬器:SAR回波訊號與影像資料庫平行化架構 (PASSED)
★ 利用色彩統計與鏡頭運鏡方式作視訊索引★ 利用欄位群聚特徵和四個方向相鄰樹作表格文件分類
★ 筆劃特徵用於離線中文字的辨認★ 利用可調式區塊比對並結合多圖像資訊之影像運動向量估測
★ 彩色影像分析及其應用於色彩量化影像搜尋及人臉偵測★ 中英文名片商標的擷取及辨識
★ 利用虛筆資訊特徵作中文簽名確認★ 基於三角幾何學及顏色特徵作人臉偵測、人臉角度分類與人臉辨識
★ 一個以膚色為基礎之互補人臉偵測策略★ 利用指紋紋路分佈順序及分佈模型作指紋自動分類
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 隨著網際網路的蓬勃發展,網路的安全機制也日趨重要,而如何建立一套有效且方便的個人身份辨識系統,成了當今一重要的課題。在過去,有許多的掌形辨識系統被提出,雖然利用掌形來辨識個人可以達到不錯的辨識率,但是卻有的使用上的不便性,主要的原因是,幾乎所有的掌形機都需要使用者將手掌放在固定的支架上,這造成了使用者的不方便,針對此一問題,我們利用一般的掃描器來取得手掌影像,使用者只需將手掌自然的張開擺放在平台上,完全沒有任何的固定支架,而依然可以作良好的身份確認。
在辨識的方法上,我們採用三種不同的方法,第一種為基本的「Template Matching」方法,再利用線性相關係數,來作為相似度比較的依據,利用這一種方式,我們可以達到90%的辨識率。第二種方法,我們採用「Back-propagation」倒傳式類神經網路來辨識掌紋,利用此一方法,我們可以達到94%的辨識率。雖然利用倒傳式演算法可以達到不錯的辨識率,但是確有收斂速度過慢的缺點,針對此一缺點,我們採用了「Scaled Conjugate Gradient」的演算法來改善此一現象,利用此一演算法,我們可以達到幾乎99.5%的辨識率。
摘要(英) In this thesis, we present a novel approach to identify people using their palm prints. We use the common scanner to capture the palm print images and don’’t need any fixed pegs to fix the palm. In palm shape recognition machine, users have to put their hand on test plane with some fixed pegs, and this is unsuitable for some users like children. We solve this problem by our approach and make users easier to use the personal identification device.
We tried the template matching and neural network methods to verify the palm print images. In template matching method, we adopt the linear correlation function to measure the similarity between different palm print images. In this approach, we can achieve about 90% accuracy rate. In neural network approach, we use the standard backpropagation and the scaled conjugate gradient algorithms to train the network. In the backpropagation neural network experiment, we have above 94% accuracy rate. Although the backpropagation neural network has desirable performance the slow convergence is the fatal drawback. In order to produce a significant improvement in the convergence performance of a multilayer perceptron, we have to use high-order information in the training process. So we use the scaled conjugate gradient method on the multilayer perceptron network, and we achieve almost 99.5% accuracy rate.
關鍵字(中) ★ 類神經網路
★ 掌紋辨識
★ 生物認證
★ 樣版比對
關鍵字(英) ★ neural network
★ palm prints verification
★ biometrics
★ template matching
論文目次 Chapter 1. Introduction
1.1 Motivation
1.2 Related survey of hand shape biometrics
1.3 Related survey of palm print biometrics
1.4 System overview
1.5 Organization of thesis
Chapter 2. Image Preprocessing and Feature Extraction
2.1 Binary thresholding
2.2 Border tracing
2.3 Region of interest (ROI)
2.4 Feature extraction
Chapter 3. Enrollment and Verification
3.1 Verification using template matching
3.2 Backpropagation neural network
3.3 Optimization viewpoint on neural network
3.4 Conjugate gradient algorithm
3.5 Scaled conjugate gradient method
Chapter 4. Experimental Results
4.1 Experiment environment
4.2 Palm print verification using template matching algorithm
4.3 Palm print verification using backpropagation neural network
4.4Palm Print recognition using scaled conjugate gradient algorithm
Chapter 5. Conclusions and Future Works
Reference
參考文獻 [1] R. Clarke, "Human identification in information systems: Management challenges and public policy issues" Information Technology & People, Vol. 7, No. 4, pp. 6-37, 1994
[2] A. K. Jain, R. Bolle and S. Pankanti, BIOMETRICS Personal identification in network society, Kluwer Academic Publishers, 1999.
[3] R. P. Miller, "Finger dimension comparison identification system", US Patent, No.3576538, 1971.
[4] D. P. Sidlauskas, ŗD hand profile identification apparatus", US Patent, No. 4736203, 1988.
[5] A. K. Jain and N. Duta, "Deformable matching of hand shapes for verification", http://www.cse.msu.edu/~dutanico/
[6] C. C. Han, P. C. Chang and C. C. Hsu, "Personal identification using hand geometry and palm-print", in Proc. of Fourth Asian Conference on Computer Vision (ACCV), pp. 747-752, 2000.
[7] S. Y. Kung, S. H. Lin and M. Fang, "A neural network approach to face/palm recognition", in Proc. of 1995 International Conference on Neural Network, pp. 323-332, 1995.
[8] D. G. Joshi, Y. V. Rao, S. Kar, V. Kumar and R. Kumar, "Computer-vision-based approach to personal identification using finger crease pattern ", Pattern Recognition, Vol. 31, pp. 15-22, 1998.
[9] D. Zhang and W. Shu, "Two novel characteristics in palm print verification: datum point invariance and line feature matching", Pattern Recognition, Vol. 32, pp. 691-702, 1999.
[10] M. Sonka, V. Hlavac and R. Boyle, Image Processing, Analysis, and Machine Vision, PWS Publisher, 1999.
[11] S. Haykin, Neural Network, Prentice-Hall Publisher, 1999.
[12] M. F. Moller, "A Scaled Conjugate Gradient Algorithm for Fast Supervised Learning", Neural Networks, Vol. 6, pp. 525-533, 1993.
指導教授 范國清(Kuo-Chin Fan) 審核日期 2000-7-6
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明