博碩士論文 87326004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:3.209.80.87
姓名 蔡政勳(Jeng-Shiun Tsai)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 零價鐵反應牆處理三氯乙烯污染物之反應行為研究
(Study on Reaction Behavior of Tirchloroethene Elimination by Zero-Valent Iron reactive barriers)
相關論文
★ 石油碳氫化合物污染場址健康風險評估之研究★ 混合式厭氧反應槽之效能探討
★ 新型改質矽藻土應用於吸附實廠含銅廢水之探討★ 焚化底渣特性及其再利用管理系統之研究
★ 焚化底渣水洗所衍生廢水特性及處理可行性研究★ 工業廢水污泥灰渣特性及其再利用於水泥砂漿之研究
★ 純氧活性污泥法處理綜合性工業廢水之研究★ 零價鐵技術袪除三氯乙烯之研究
★ 預臭氧程序提升綜合性工業廢水生物可分解性之研究★ 下水污泥灰渣應用於銅離子去除之初步探討
★ 纖維材料對於污泥灰渣砂漿工程性質之影響★ 纖維床生物反應器祛除甲苯與三氯乙烯之研究
★ 下水污泥灰渣特性及應用於水泥 砂漿之研究★ 以Microtox檢測方法評估實際廢水生物毒性之研究
★ 化學置換程序回收氯化銅蝕刻廢液之研究★ 零價鐵反應牆外加電壓去除水中三氯乙烯之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究利用管柱實驗模擬零價鐵反應牆,針對反應牆之鐵粉配置量、反應牆厚度、進流濃度及進流速度等物理因子,以及三氯乙烯(TCE)之還原脫氯反應進行研究,並探討零價鐵反應牆長期操作的可行性。
實驗結果顯示,TCE在管柱內之降解過程,可利用一階反應進行模擬,且TCE的反應速率常數會隨著鐵粉配置量的增加而提高,不過,鐵粉配置必須使鐵粉表面積/孔隙體積(S/V)低於747 m2/L,以使反應牆維持足夠之滲透率(>10-2 cm/sec)。另外,在高S/V值範圍,TCE去除速率會受到脫氯反應的限制,因而反應速率常數值無法與S/V值呈線性關係,但可利用K(S/V)/Ks+(S/V)的關係式加以修正,其中,K即為最大反應速率常數值,Ks則為反應速率常數值等於1/2K時的S/V值,其表示TCE與零價鐵表面反應的親和力。此外,當S/V值為121.3m2/L,進流水中的TCE濃度達72.5mg/L時,TCE之降解速率仍不會受到抑制,且表面流速對反應速率亦無明顯影響。
另一方面,研究結果顯示,在TCE降解過程中,當接觸時間達5.5hr時,即無法偵測到反應中間產物二氯乙烯(DCE)的生成,故推測TCE於鐵表面脫率為DCE及氯乙烯後,在很短時間內即會於鐵表面繼續發生脫氯反應,待完全脫氯後,其反應產物再由鐵表面脫附,而釋放於水溶液中。另外,對於不同含氯數的含氯烯類污染物而言,含氯數較高者,具有較佳的去除效率,主要由於其還原傾向較大。不過,對於三種含氯數相同的DCE而言,推測其分子結構特性及污染物與鐵表面接觸的方位,會使得三種DCE的反應速率有很大差異,其中,以cis-DCE的去除速率較低,其反應速率常數值僅為1,1-DCE反應速率常數值的1/4左右,故欲使cis-DCE達到特定去除率時,則需加大反應牆厚度或提高鐵粉配置量。另外,當TCE及四氯乙烯(PCE)於地下水中共同存在時, PCE的降解速率會受到TCE的競爭性抑制而降低,且受抑制的程度隨TCE濃度的提高,而逐漸增加,然而,由於PCE的反應速率常數值,仍會高於TCE的反應速率常數值,故競爭性抑制效應,對於反應牆設計並沒有明顯影響,仍須以TCE的去除效果作為設計依據。在90天的操作時間下,模擬管柱均可維持很高的TCE去除率,且未發現去除率有降低的情形,主要是由於進流水中僅含有微量的TCE,對鐵粉的消耗速率非常緩慢,因此零價鐵反應牆在長期操作下具有良好而穩定的處理效果。
摘要(英) The objective of this study was aimed to investigate the elimination of trichloroethylene (TCE) in contaminated water by the zero-valent iron reactive barrier. The column experiments were carried out to simulate the operation of reactive barrier. Physical factors including iron surface per porosity volume (S/V) or arranged amounts of zero-valent iron, the thickness of barriers, inlet concentration of TCE and superficial velocity were studied to understand the performance of reactive barrier. Moreover, the reaction mechanism of reductive dechlorination and the feasibility of long-term operation were also investigated in this study.
Results indicated the removal of TCE could be simulated by the first-order equation. The reaction rate constant increased as S/V of iron were increased, and excellent linear relationship between them was obtained in this study. However, the value of S/V should be lower than 747 m2/L to maintain enough permeability(>10-2cm/sec) in the reactive barrier. Also, the increase extent of rate constant would decrease as higher S/V was arranged in the barriers. This fact suggested the removal of TCE would be limited by the rate of dechlorination. The relationship of rate constant and S/V could be modified to the model of K(S/V) / Ks + (S/V), where the K was the maximum rate constant and the Ks (S/V at 1/2 K)represented the affinity between the iron and TCE. Meanwhile, when the S/V was set to 121.3 m2/L, the reaction rate was similar even the inlet concentration of TCE was increased to be as high as 72.5 mg/L. Effect of superficial velocity was also minimal on the removal of TCE.
In addition, by the analysis of intermediate and chlorine ion, experimental results also suggested the reactive products would release to the bulk solution until the TCE was dechlorinated completely in the grains of iron. Furthermore, the rate constant of chlorinated ethene increased generally with the increase of chlorine numbers or reduction potential. However, for the dichloroethylene (DCE), the removal efficiency of cis-DCE was lower than that of tran-DCE greatly and this fact was suggested due to the characteristics of molecular structure and the direction of collision between the DCE and iron surface. Therefore, in order to enhance the removal of cis-DCE in contaminated water, increasing the thickness of barriers or the arranged amounts of iron was necessary. On the other hand, the removal efficiency of PCE was reduced by the competition inhibition when PCE and TCE coexisted in the contaminated water. Since the rate constant of PCE was still greater than that of TCE, the effect of competition inhibition could be ignored for the design of reaction barriers. The performance of column experiments was excellent and stable during 90 days of period. Thus, the reactive barrier exhibited great potential in the long-term operation.
關鍵字(中) ★ 零價鐵反應牆
★ 三氯乙烯
★ 還原脫氯
★ 反應機制
★ 含氯乙烯化合物
關鍵字(英) ★ zero-valent iron reactive barrier
★ trichloroethylene
★ reductive dechlorination
★ reaction mechanism
★ chlorinated ethene
論文目次 零價鐵反應牆處理三氯乙烯污染物之反應行為研究
目 錄
摘要Ⅰ
目錄Ⅲ
圖目錄Ⅵ
表目錄Ⅷ
第一章 前言1
1-1 研究緣起 1
1-2 研究目的與內容2
第二章 文獻回顧4
2-1 TCE之物化特性及其對人體之危害4
2-2 TCE污染現況7
2-3 TCE於地表下之污染行為7
2-4 受TCE污染地下水整治技術之回顧10
2-5 零價鐵反應牆整治受TCE污染地下水之研究現況19
2-5-1 零價鐵分解TCE之研究現況 20
2-5-2 現地應用之現況 26
2-5-3 現地應用之設計 31
第三章 實驗設備、材料與方法37
3-1 研究流程37
3-2 實驗裝置39
3-3 實驗設計及操作方法41
3-4 實驗設備49
3-5 實驗材料及藥品51
3-6 分析方法53
第四章 結果與討論55
4-1 背景實驗55
4-2 零價鐵反應牆分解TCE之動力研究57
4-2-1 管柱質傳特性探討57
4-2-2 管柱降解污染物動力數學式之建立62
4-3 零價鐵反應牆物理因子探討66
4-3-1 鐵粉配置量66
4-3-1-1 TCE去除效果67
4-3-1-2 反應速率常數K與S/V值關係之修正70
4-3-1-3 透水性限制75
4-3-1-4 鐵粉配置量評估77
4-3-2 反應牆厚度86
4-3-3 TCE進流濃度91
4-3-4 表面流速98
4-4 含氯烯類化合物之還原脫氯反應探討104
4-4-1 脫氯反應之中間產物鑑定104
4-4-2 氯烯類化合物含氯數之影響107
4-4-3 氯烯類化合物結構特性之影響111
4-4-4 競爭性抑制效應 119
4-5 長期操作評析125
4-5-1 TCE分解效果125
4-5-2 管柱外觀觀察與鐵粉表面微觀觀察128
4-5-3 出流水質、孔隙率及滲透率134
4-5-4 綜合評析135
第五章 結論與建議137
5-1 結論137
5-2 建議139
參考文獻140
附錄A 管柱設計之考量及流況試驗 附A1
附錄B 管柱實驗設備圖 附B1
附錄C 檢量線 附C1
附錄D 水質分析原始數據 附D1
圖目錄
圖2-1 零價鐵分解TCE之基本示意圖21
圖2-2 TCE還原脫氯之反應途徑26
圖2-3 零價鐵反應牆型式(a)連續流透水性反應牆(b)現地導引處理系統
31
圖2-4 U型現地導引處理系統 32
圖2-5 各種型式之現地導引處理系統(a)反應牆並聯組合(b)反應牆串聯
組合(c)導引系統包封侷限及反應牆串聯組合33
圖3-1 研究方法流程圖38
圖3-2 實驗設備裝置圖40
圖3-3 石英砂篩分析之結果52
圖4-1 管柱空白實驗之結果(表面流速=16.63cm/day,進流濃度=8mg/L)
56
圖4-2 S/V值與α之關係60
圖4-3 柱塞流反應器63
圖4-4 ln(C/C0)對接觸時間關係圖65
圖4-5 TCE殘留濃度與接觸時間之關係68
圖4-6 反應速率常數模式與實驗值之比較74
圖4-7 S/V值與滲透率之關係76
圖4-8 反應牆所需寬度與污染物團範圍關係圖(俯視圖)79
圖4-9 反應牆規模及鐵配置量之決定流程圖83
圖4-10 不同T/A值所對應之TCE去除率及最小反應牆厚度85
圖4-11 不同S/V值下之TCE去除量/鐵量與TCE去除率之關係(TCE進流濃
度:8mg/L,接觸時間:22hr)85
圖4-12 反應牆厚度與TCE殘留濃度之關係87
圖4-13 反應牆厚度與污染物去除率之關係89
圖4-14 污染物去除率與半生期數之關係90
圖4-15 TCE去除率與接觸時間之關係(a)S/V=121.3m2/L(b)S/V=308.2
m2/L92
圖4-16 TCE進流濃度與殘留濃度之關係(a)S/V=121.3m2/L(b)S/V=308.2
m2/L95
圖4-17 TCE去除量與TCE進流濃度之關係97
圖4-18 TCE進流濃度與TCE去除量/鐵粉量之關係98
圖4-19 不同表面流速下之TCE殘留濃度與接觸時間之關係99
圖4-20 表面流速與反應速率常數之關係101
圖4-21 不同表面流速下之TCE殘留濃度與通過管柱長度之關係101
圖4-22 不同地下水流速對應之K與L值(a)去除率90%(b)去除率99%(c)去除
率99.9%102
圖4-23 不同接觸時間下之TCE、DCE及氯離子濃度變化圖105
圖4-24 TCE脫氯機制106
圖4-25 不同含氯數之含氯烯類濃度與接觸時間之關係107
圖4-26 不同含氯烯類之氯離子濃度/最大脫氯氯離子濃度與接觸時間之
關係110
圖4-27 二氯乙烯殘留濃度與接觸時間之關係112
圖4-28 TCE接受電子轉化為cis-DCE114
圖4-29 cis-DCE及trans-DCE可接受電子方位之差異115
圖4-30 標準氧化還原電位與反應速率常數之關係 117
圖4-31 標準氧化還原電位與半生期之關係117
圖4-32 含氯乙烯達到特定去除率所需之反應牆厚度118
圖4-33 含氯烯類達不同去除率之所需S/V值119
圖4-34 PCE降解過程中之TCE生成濃度120
圖4-35 TCE及PCE共同存在下之TCE濃度隨時間變化圖122
圖4-36 TCE及PCE共同存在下之PCE濃度隨時間變化圖122
圖4-37 操作天數與TCE去除率之關係127
圖4-38 經90天操作時間後之模擬管柱外觀129
圖4-39 經酸洗前處理之鐵粉表面形態130
圖4-40 經90天操作時間之鐵粉表面形態 131
表目錄
表2-1 TCE之物化特性5
表2-2 TCE對人體之健康危害效應6
表2-3 美國superfund site中最常見的20種地下水污染物8
表2-4 地下水污染整治技術彙整11
表2-5 各種地下水整治技術優缺點比較 14
表2-6 零價鐵還原脫氯模式之比較20
表2-7 零價鐵去除TCE之分解效果24
表2-8 TCE還原脫氯之反應途徑24
表2-9 實際場址零價鐵反應牆操作現況 27
表2-10 零價鐵反應牆現地應用操作問題之彙整30
表2-11 實際場址零價鐵反應牆前後地下水水質之比較30
表2-12 零價鐵反應牆整治受TCE污染地下水之設計要求36
表3-1 本研究所填充管柱之基本特性44
表3-2 背景實驗之實驗條件45
表3-3 鐵粉含量影響之實驗條件46
表3-4 含氯反應中間產物鑑定實驗條件 46
表3-5 含氯數及分子結構影響實驗條件 47
表3-6 進流濃度效應實驗條件47
表3-7 表面流速效應實驗條件48
表3-8 競爭性效應實驗條件48
表3-9 反應牆長期操作之影響實驗條件 49
表4-1 不同S/V值下TCE之反應速率常數及半生期69
表4-2 含氯乙烯反應速率常數及半生期之比較108
表4-3 DCE的反應速率常數及半生期比較113
表4-4 含氯烯類之KSA值119
表4-5 PCE在不同濃度TCE同時進流之反應速率常數值124
參考文獻 "Permeable Reactive Barriers: Durango Colorado,”Grand Junction Office, Web Site: http://www.doegjpo.com.
Agrawal, A., and P. G. Tratnyek, “Reduction of Nitro Aromatic Compounds by Zero-Valnet Iron Metal , ” Environmental Science & Technology, Vol. 30, No. 1, pp. 153-160 (1996).
Agrawal, A., and P. G. Tratnyek, “Reduction of Nitro Aromatic Compounds by Zero-Valnet Iron Metal , ” Environmental Science & Technology, Vol. 30, No. 1, pp. 153-160 (1996).
Beitinger, E., “Permeable Treatment Walls-Design, Constration, and Cost, ” NATO/CCMS Pilot Study, EPA 542-R-98-003 (1998).
Beitinger, E., “Permeable Treatment Walls-Design, Constration, and Cost, ” NATO/CCMS Pilot Study, EPA 542-R-98-003 (1998).
Beitinger, E., “Permeable Treatment Walls-Design, Constration, and Cost, ” NATO/CCMS Pilot Study, EPA 542-R-98-003 (1998).
Cherry, J. A., and B. L. Parker, “Chlorinated Solvent Behaviour in Sandy Aquifers, ” 1997 International Conference on Groundwater Quality Protection, Taipei, pp. 15-23 (1997).
Cherry, J. A., and B. L. Parker, “Chlorinated Solvent Behaviour in Sandy Aquifers, ” 1997 International Conference on Groundwater Quality Protection, Taipei, pp. 15-23 (1997).
Fahrig, R., S. Madle, and H. Baumann, “Genetic Toxicology of Trichloroethylene(TCE)”, Muatation Research, 340, pp. 1-36(1995)
Fountain, J. C., “Technology for Dense Nonaqueous Phase Liquid Source Zone Remediation”, Ground-Water Remediation Technologies Analysis Center, TE-98-02(1998).
Fountain, J. C., “Technology for Dense Nonaqueous Phase Liquid Source Zone Remediation”, Ground-Water Remediation Technologies Analysis Center, TE-98-02(1998).
Gillham, R. W., and S. F. O,Hannesin, “Enhanced Degradation of Halogenated Aliphatics by Zero-Valent Iron”, Ground Water, Vol. 32, No. 6, pp.958-967(1994).
Gillham, R. W., and S. F. O,Hannesin, “Enhanced Degradation of Halogenated Aliphatics by Zero-Valent Iron”, Ground Water, Vol. 32, No. 6, pp.958-967(1994).
Gillham, R. W., and S. F. O,Hannesin, “Enhanced Degradation of Halogenated Aliphatics by Zero-Valent Iron”, Ground Water, Vol. 32, No. 6, pp.958-967(1994).
Gillham, R. W., and S. F. O,Hannesin, “Enhanced Degradation of Halogenated Aliphatics by Zero-Valent Iron”, Ground Water, Vol. 32, No. 6, pp.958-967(1994).
Gillham, R. W., and S. F. O,Hannesin, “Enhanced Degradation of Halogenated Aliphatics by Zero-Valent Iron”, Ground Water, Vol. 32, No. 6, pp.958-967(1994).
Gillham, R. W., and S. F. O,Hannesin, “Enhanced Degradation of Halogenated Aliphatics by Zero-Valent Iron”, Ground Water, Vol. 32, No. 6, pp.958-967(1994).
Gillham, R. W., and S. F. O,Hannesin, “Enhanced Degradation of Halogenated Aliphatics by Zero-Valent Iron”, Ground Water, Vol. 32, No. 6, pp.958-967(1994).
Keely, J. F., “Introduction”, Seminar Publication: Transport and Fate of Contaminants in the Subsurface, Chapter 1, EPA-625-4-89-019, pp. 1-4 (1989).
Lovelace, K. A., “Evaluating the Technical Impracticability of Groundwater Cleanup”, 1997 International Conference on Groundwater Quality Protection, Taipei, pp.165-179(1997).
Lovelace, K. A., “Evaluating the Technical Impracticability of Groundwater Cleanup”, 1997 International Conference on Groundwater Quality Protection, Taipei, pp.165-179(1997).
Lovelace, K. A., “Evaluating the Technical Impracticability of Groundwater Cleanup”, 1997 International Conference on Groundwater Quality Protection, Taipei, pp.165-179(1997).
Lovelace, K. A., “Evaluating the Technical Impracticability of Groundwater Cleanup”, 1997 International Conference on Groundwater Quality Protection, Taipei, pp.165-179(1997).
Nam, S., and P. G. Tratnyek, “Reduction of Azo Dyes with Zero-Valent Iron” Water Research, Vol. 34, No. 6, pp. 1837-1845(2000).
Nyer, E. K., “Dnapl-Stop the Madness”, Ground Water Monitoring and Remediation Vol. 19, No. 1, pp.62-66(1999).
O’Hannesin, S. F., and R. W. Gillham , “Long-Term Performance of an In Situ “Iron Wall” for Remediation of VOCs, ” Ground Water, Vol. 36, No. 1, pp.164 -170 (1998).
O’Hannesin, S. F., and R. W. Gillham , “Long-Term Performance of an In Situ “Iron Wall” for Remediation of VOCs, ” Ground Water, Vol. 36, No. 1, pp.164 -170 (1998).
Orth, S. W., and R. W. Gillham, “Dechlorination of Trichloroethene in Aqueous Solution Using Fe0, ” Environmental Science & Technology, Vol. 30, No. 1, pp. 66-71 (1996).
Orth, S. W., and R. W. Gillham, “Dechlorination of Trichloroethene in Aqueous Solution Using Fe0, ” Environmental Science & Technology, Vol. 30, No. 1, pp. 66-71 (1996).
Orth, S. W., and R. W. Gillham, “Dechlorination of Trichloroethene in Aqueous Solution Using Fe0, ” Environmental Science & Technology, Vol. 30, No. 1, pp. 66-71 (1996).
Orth, S. W., and R. W. Gillham, “Dechlorination of Trichloroethene in Aqueous Solution Using Fe0, ” Environmental Science & Technology, Vol. 30, No. 1, pp. 66-71 (1996).
RTDF, "Technical Document:Permeable Reactive Barrier Installation Profiles",
Web Site://www.rtdf.org/public/permbarr/profiletoc.htm.
Web Site://www.rtdf.org/public/permbarr/profiletoc.htm.
Web Site://www.rtdf.org/public/permbarr/profiletoc.htm.
Starr, R. C., and J. A. Cherry, “In Situ Remediation of Contaminated Ground Water: The Funnel-and-Gate System, ” Ground Water, Vol. 32, No. 3, pp.465-476 (1994).
Starr, R. C., and J. A. Cherry, “In Situ Remediation of Contaminated Ground Water: The Funnel-and-Gate System, ” Ground Water, Vol. 32, No. 3, pp.465-476 (1994).
Tursman, J. F., and D. J. Cork, “Subsurface Contaminant Bioremediation Engineering, ” Critical Reviews in Environmental Control, Vol. 22, No. 1/2, pp. 1-26 (1992).
U. S. EPA, “An Overview of Underground Storage Tank Remediation Options”, Office of Solid Waste and Emergency Response, EPA-510-F-93-029 (1993).
U. S. EPA, “An Overview of Underground Storage Tank Remediation Options”, Office of Solid Waste and Emergency Response, EPA-510-F-93-029 (1993).
U. S. EPA, “Groundwater Cleanup:Overview of Operation Experience at 28 Sites”, Office of Solid Waste and Emergency Response, EPA-542-R-99-006 (1999b).
U. S. EPA, “Groundwater Cleanup:Overview of Operation Experience at 28 Sites”, Office of Solid Waste and Emergency Response, EPA-542-R-99-006 (1999b).
U. S. EPA, “Permeable Reactive Barrier Technologies for Contaminant Remediation”, Office of Research and Development, Washington DC, 20460, EPA-600-R-98-125(1998b).
U. S. EPA, “Permeable Reactive Barrier Technologies for Contaminant Remediation”, Office of Research and Development, Washington DC, 20460, EPA-600-R-98-125(1998b).
U. S. EPA, Fact Sheet, Drinking Water Regulations Under the Safe Drinking Water Act, Criteria and Standards Division, Office of Drinking Water. Washington, D. C. (1996).
U.S. Army Corps of Engineers, “Design Guidance for Application of Permeable Reactive Barriers to Remediate Dissolved Chlorinated Solvents”, DG 1110-345-117(1997).
Vidic, R. D., and F. D. Pohland, “Treatment Walls, ” Ground-Water Remediation Technologies Analysis Center (1996).
Vogel, T. M., “Transformation of Halogenated Alphatic Compunds”, Environmental Science and Technology, Vol. 2, No. 8, pp. 722-736(1987).
Wilson, E. K., “Zero-Valent Metals Provide Possible Solution to Groundwater Problems, ” C&EN, Vol. 7, No. 3, pp. 19-22 (1995).
Wilson, E. K., “Zero-Valent Metals Provide Possible Solution to Groundwater Problems, ” C&EN, Vol. 7, No. 3, pp. 19-22 (1995).
Yin, Y. and H. E. Allen, “In Situ Chemical Treatment”, Ground-Water Remediation Technologies Analysis Center, TE-99-01(1999).
行政院勞工委員會,物質安全資料表範例(1997)。
行政院環境保護署”公告1,3-丁二烯等五種化學物質為毒性化學物質”, http://www.epa.gov.tw/news/jn861014.htm (1997)。
吳仲峻,「甲烷氧化菌對三氯乙烯分解之操作條件探討之」,碩士論文,國立中興大學環境工程研究所,台中(1996)。
官知嫻、李季眉、盧至人,「酚分解菌共代謝三氯乙烯」,第二十三屆廢水處理技術研討會論文集,第710-718頁,台中(1998a)。
官知嫻、李季眉、盧至人,「甲苯分解菌共代謝三氯乙烯」,第二十三屆廢水處理技術研討會論文集,第727-733頁,台中(1998b)。
林建芬,「甲烷分解菌對三氯乙烯好氧分解之影響」,碩士論文,國立中興大學環境工程研究所,台中(1994)。
梁昇、黃天福,「地下水文學」,大學圖書出版社(1994)。
陳家洵,「台灣地區地下水污染之討論」,現代化研究,第12期,第49-55頁(1997a)。
陳家洵,「地下水污染之討論」,應用倫理研究通訊,第3期,第19-23頁(1997b)。
陳家洵、董天行,「三氯乙烯污染地下水之整治標準研究-期末報告」,國立中央大學應用地質研究所,中壢(1998)。
陳慎德、王凱中、何秉宜、何忠賢,「對台灣地區土壤地下水整治工作之看法」,環境工程會刊,第10卷,第3期,第67-82頁(1999)。
蔡文田,「含氯有機溶劑之毒性及新陳代謝機制」,工業污染防治,第11卷,第3期,第175-187頁 (1992)。
蔡文田,邱伸彥,「蒸氣脫脂用含氯溶劑之特性、管制和污染預防」,工業污染防治,第41期,第145-160頁(1992)。
盧至人(譯),Charbeneau, R. J., P. B. Bedient, and R. C. Loehr(著),「地下水的污染整治」,國立編譯館,台北(1998)。
盧滄海、賴龍山,「廢溶劑回收可行性探討」,工業污染防治,第29期,第102-177頁(1989)。
指導教授 曾迪華(Dyi-Hwa Tseng) 審核日期 2000-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明