博碩士論文 87326016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:3.147.73.35
姓名 陳瞻宇(Chan-Yu Chen)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 重力式下水道中溶氧傳輸及水質轉化之研究
(The study of oxygen transfer and transformation of water quality in gravity sewer)
相關論文
★ 變動負荷特性與殘留基質對缺氧釋磷攝磷現象之探討★ AOAO污水處理程序去除營養鹽之特性研究
★ 生物擔體渠道淨化二級生物處理放流水氮化物之特性探討★ 浸水式生物濾床處理污水營養物質之研究
★ 併同生物膜與活性污泥程序之硝化及脫硝攝磷特性研究★ 下水道系統生化動力模式建立之研究
★ 應用分子生物技術進行生物處理程序菌相分析之研究★ 多段式生物濾床併同去除碳、氮、磷之研究
★ MBR除氮系統特性之研究★ 多段進流去氮除磷系統動態處理特性之研究
★ 多段進流去氮除磷系統穩動態處理及 控制特性之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 污水在下水道系統中流動時會發生物理、化學與生物的反應,並造成特定組成的改變。而下水道中降解污染物的主要角色是生物膜系統,因此本研究以長21.7m,直徑0.15m的下水道模型廠,經由穩態培養使管壁附著固定生物膜後,分別進行溶氧剖面的量測及批次實驗的水質分析。由實驗結果可探討影響溶氧傳輸的因素﹔同時配合建立的模式以暸解管渠中的水質變化情形。
在溶氧傳輸的研究方面,溶氧要從水體中傳至生物膜內與擴散層厚度有關,流速愈快,擴散層厚度愈薄,溶氧可更容易傳送至生物膜內。除了流速外,水體中的溶氧濃度及污染物濃度都會影響到溶氧的傳輸,水體中之溶氧濃度高或污染物濃度低會有助於溶氧的傳輸。
在水質轉化的研究部份以Activated Sludge Model No.1為依據,建立一個可描述有機碳化合物及氮化合物在下水道中傳輸及轉化的模式。模式內考慮水體中好氧生長、生物膜內缺氧生長、溶解性有機氮的氨化、捕捉性有機氮的水解等程序。並同時配合實驗的結果以確定模式的可靠性。由實驗及模擬的結果均顯示溶氧受到起始污染物濃度及流速的影響最大。起始污染物濃度愈高,所消耗的溶氧量愈多,因此須較長時間來達到曝氣量與被生物利用量之平衡;流速快則再曝氣作用明顯,溶氧濃度也愈容易增加。且起始污染物濃度愈高,生物膜內微生物對污染物的降解速率也愈快。流速增加時,各種成份的傳輸情形會較好,相對在管渠中的停留時間短,因此對降解污染物濃度的成效並不理想;對提高溶氧則有良好之效果。
摘要(英) Many chemical, physical and biological transformations of wastewater would take place in sewer system and caused significant changes in the compositions during transportation. Biofilm played the main role in degrading pollutants in the sewer system. The biofilm was cultivated in a 21.7m long pipe, with a diameter of 0.15m model sewer model plant. Under stable condition, the biofilm was securely attached on the pipe botton, so the dissolved oxygen profile could be measured and water quality analysis could be proceeded in the batch experiments. The factors that effect the transportation of dissolved oxygen could be explored from the experiments results. How does water quality change in the pipe by established model could be understood at the same time.
In the study of oxygen transfer, the dissolved oxygen transfered from bulk water to biofilm was directly related to the thickness of diffusion layer. The faster the flowing velocity and the thinner diffusion layer thickness is, the more easily oxygen transfered into the biofilm. Other than the flowing velocity, the concentration of the dissolved oxygen and the concentration of the pollutants all affected the transportation of the dissolved oxygen. The higher concentration of dissolved oxygen in water or the lower concentration of the pollutants all favor the transportation of dissolved oxygen.
A model based on the Activated Sludge Model No.1 was established to simulate the transportation and transformation of carbon compounds and nitrogen compounds in the sewer system. Processes of aerobic growth in bulk water, anoxic growth in biofilm, ammonification of soluble organics nitrogen, hydrolysis of entrapped organic nitrogen etc. was considered in the model. In order to explore the fitness between the model prediction values and the experimental values, these two values were compared.
The experimental and simulated results both indicated that dissolved oxygen was affected mostly by the concentration of the pollutants and flowing velocity. The higher concentrations of the pollutants comsumed more oxygen; therefore, it took longer time to reach the balance of aeration and the utility by organisms. The faster the flowing velocity was, the more significant the reaeration effects were. The concentration of dissolved oxygen also increased easily when the concentration of initial pollutant was high, the microbial degrading rate of the pollutants in biofilm could increase. The transportation ability of each component increased with the flow velocity increased that resulted in the dissolved oxygen increased. On the contrary, pollutants degrading performance decreased with the short retention time in the pipe.
關鍵字(中) ★ 下水道
★ 溶氧剖面
★ 擴散層
★ 水質模式
關鍵字(英) ★ sewer
★ oxygen profile
★ diffusion layer
★ water quality model
論文目次 中文摘要………………………………………………………………..Ⅰ
英文摘要…………………………………………………………….. Ⅱ
目錄…...………………………………………………………………...Ⅳ
表目錄……………………………………………………………….…Ⅶ
圖目錄…………………………………………………………………..Ⅸ
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的與內容 2
第二章 文獻回顧與理論分析 3
2.1 渠道水質模式 3
2.2 再曝氣係數KL模式 6
2.3 擴散係數理論 8
2.3.1 Fick’s Law 8
2.3.2 Fick’s second Law 9
2.3.3 濃度剖面之推導 10
2.4 生物動力模式 12
2.4.1 微生物生長 12
2.4.2 基質限制生長 12
2.4.3細胞生長與基質利用 13
2.5下水道物理、化學、生物反應 19
2.6下水道中的水質轉化模式 22
2.7 水質模式中各參數分析方法 27
2.7.1 各種參數之分析方法 27
2.7.2 ASM1中所提供之方法 29
第三章 實驗設備與方法 33
3.1 實驗目的 33
3.2 實驗模廠與設備 33
3.3實驗分析方法與設備 38
3.4 實驗基質與生物膜培養 39
3.5 生物動力模式之建立 41
3.6水質模式之建構 45
第四章 結果與討論 47
4.1 不同流速時對氧傳輸之影響 47
4.2 不同基質濃度對氧傳輸之影響 66
4.3 流速固定下變動起始基質濃度之水質變化 72
4.3.1 不同基質濃度之溶氧濃度變化 72
4.3.2 TCOD的降解率之分析 72
4.3.3 氮化合物在管渠中之轉化 74
4.4 模式與實驗之比較 79
4.4.1 溶氧之比較 79
4.4.2 溶解性COD及非溶解性COD之比較 79
4.4.3 氮化合物之比較 82
4.5 模式預測不同流況之水質變化 84
4.5.1 不同流速時之水質變化 84
4.5.2 起始溶氧不同時之水質變化 85
4.5.3 起始污染物濃度不同時之水質變化 88
第五章 結論與建議 91
5.1 結論 91
5.2 建議. 92
參考文獻 94
附錄一…………………………………………………………………..97
附錄二…………………………………………………………………102
參考文獻 1. ASCE(1984). “A Standard for the measurement of oxygen transfer in water”. “OxygenTransfer Standard Committee”, ASCE, New York.
1. ASCE(1984). “A Standard for the measurement of oxygen transfer in water”. “OxygenTransfer Standard Committee”, ASCE, New York.
1. ASCE(1984). “A Standard for the measurement of oxygen transfer in water”. “OxygenTransfer Standard Committee”, ASCE, New York.
4. Bjerre, H. L. ,Lokkegaad, H.,and Teichgraber, B.(1998). “Biological activity of biofilm and sediment in the emscher river, Germany.” Wat. Sci. Tech., 37(1), pp. 9-16.
5. Balmer, P. ,and Tagizadeh-Nasser , M.(1995). “Oxygen transfer in gravity flow sewers.” Wat. Sci. Tech. ,31(7), pp.127-135.
6. Dobbins, W. E.. (1964).“BOD and Oxygen relationships in stream.” J. San. Eng. Div., ASCE, 94, pp. 319-344.
6. Dobbins, W. E.. (1964).“BOD and Oxygen relationships in stream.” J. San. Eng. Div., ASCE, 94, pp. 319-344.
8. Lau, Y. L. (1990). “Modelling the consumption of dissolved contaminats by biofilm periphyton in open-channel.” Wat. Res. 24(10), pp. 1269-1274 .
9. Lau, Y. L., and Liu, D. (1993). “Effect of flow on biofilm accumulation in open channels.” Wat. Res., 27(3), pp. 355-360.
9. Lau, Y. L., and Liu, D. (1993). “Effect of flow on biofilm accumulation in open channels.” Wat. Res., 27(3), pp. 355-360.
9. Lau, Y. L., and Liu, D. (1993). “Effect of flow on biofilm accumulation in open channels.” Wat. Res., 27(3), pp. 355-360.
12. Li, Shiyu, and G. H. Chen,(1994).“Modeling the organic removal and oxygen consumption by biofilm in an open-channel Flow.” Wat. Res., 25(7), pp. 53-31.
12. Li, Shiyu, and G. H. Chen,(1994).“Modeling the organic removal and oxygen consumption by biofilm in an open-channel Flow.” Wat. Res., 25(7), pp. 53-31.
14. Owens, M., Edwards, R. W., and Gibbs, J. W. (1964). “Some reaeration studies in streams.” Int J. Air Wat. Poll., 8, pp. 469-486 .
15. Parkhurst, J. D., and Pomeroy R. D.(1972).“Oxygen absorption in streams.” J. San. Eng., Dive., ASCE, 98, No SA1, pp. 101-124 .
16. Steinberger, N. ,and Hondzo, M.(1999). “Diffusional mass transfer at sediment-water interface."Journal of Enviornmental Engineering. 125(2), pp. 192-200.
17. Tagizadeh-Nasser,M.(1986),“Materieoverforing gas-vatska avloppslednin-gar (Material transfer in sewer).” Licenciate Thesis.
18. Thackston, E. L., and Krenkel P. A. (1969).“Reaeration prediction in natural streams.” J. San. Eng. Div., ASCE, 95, SA1, pp. 65-94 .
18. Thackston, E. L., and Krenkel P. A. (1969).“Reaeration prediction in natural streams.” J. San. Eng. Div., ASCE, 95, SA1, pp. 65-94 .
18. Thackston, E. L., and Krenkel P. A. (1969).“Reaeration prediction in natural streams.” J. San. Eng. Div., ASCE, 95, SA1, pp. 65-94 .
18. Thackston, E. L., and Krenkel P. A. (1969).“Reaeration prediction in natural streams.” J. San. Eng. Div., ASCE, 95, SA1, pp. 65-94 .
18. Thackston, E. L., and Krenkel P. A. (1969).“Reaeration prediction in natural streams.” J. San. Eng. Div., ASCE, 95, SA1, pp. 65-94 .
23. 歐陽嶠暉,(2000) “下水道工程學”,長松出版社
24. 廖宜慶,(1999) “重力式下水道溶氧與生物動力之研究”,碩士論文,國立中央大學土木所
指導教授 歐陽嶠暉(Chaio-Fuei Ouyang) 審核日期 2000-7-5
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明