博碩士論文 87344002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:18.217.10.160
姓名 蕭兆志(Chao-Chih Hsiao)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 次微米金氧半場效電晶體高頻大訊號模型及應用於微波積體電路之研究
(Submicron MOSFET RF Large-signal Model Used in Microwave Integrated Circuit Designs)
相關論文
★ 增強型異質結構高速移導率電晶體大信號模型之建立及其在微波放大器之應用★ 空乏型暨增強型Metamorphic HEMT之製作與研究
★ 增強型與空乏型砷化鋁鎵/砷化銦鎵假晶格高電子遷移率電晶體: 元件特性、模型與電路應用★ 氧化鋁基板上微波功率放大器之研製
★ 氧化鋁基板上積體化微波降頻器電路之研製★ 順序特徵結構設計研究及其應用在特徵模子去耦合與最小特徵值靈敏度
★ 順序特徵結構設計研究及其應用在最大強健穩定度與最小迴授增益★ LDMOS功率電晶體元件設計、特性分析及其模型之建立
★ CMOS無線通訊接收端模組之設計與實現★ 積體化微波被動元件之研製與2.4GHz射頻電路設計
★ 異質結構高速移導率電晶體模擬、製作與大訊號模型之建立★ 氧化鋁基板微波電路積體化之2.4 GHz接收端模組研製
★ 氧化鋁基板上積體化被動元件及其微波電路設計與研製★ 二維至三維微波被動元件與射頻電路之設計與研製
★ CMOS射頻無線通訊發射端電路設計★ 深次微米通道摻雜場效應電晶體及其在微波功率放大器之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 摘 要
隨著個人無線行動通訊系統如火如荼的發展,各家廠商無不以低成本、高效能與短的產品上市時程為競爭的訴求。而根據這些要求,矽質金氧半場效電晶體遂成為應用於射頻通訊系統的最佳解決方案。但由於矽質金氧半場效電晶體本身在高頻時所具有的寄生效應並無法被傳統的金氧半場效電晶體模型所預測,所以在射頻電路的應用上往往因為沒有足夠準確的大訊號模型而造成設計時間的浪費。為了改善此一現象,我們需要一個不僅能夠應用在直流、交流模擬的大訊號模型,還需要能夠準確預測金氧半場效電晶體高頻特性的大訊號模型,除此之外,金氧半場效電晶體模型在功率特性預測上亦成為一個重要的課題。在本篇論文中,我們根據製程公司所提供的0.35微米標準金氧半場效電晶體製程的BSIM3v3模型,外加上表現高頻寄生效應的被動元件,建立了一個完整的金氧半場效電晶體高頻大訊號模型。此一大訊號模型除可準確模擬元件直流、交流特性外,還可以準確的預估元件操作在高頻率與高功率輸入/出的特性。我們利用此一金氧半場效電晶體高頻大訊號模型,分別設計與製作了各種不同的微波電路,以驗證我們高頻大訊號模型的準確性。此外我們為了研究矽質基板在不同元件間訊號耦合的現象,我們設計了一個測試架構來測試不同元件之訊號藉由基板耦合的效應,並且,我們使用不同的阻隔架構來試圖減少訊號耦合的現象。最後我們分別建立了兩個等效模型來模擬矽質基板的耦合效應,此兩個模型分別為:等效電路模型與半經驗式模型。由這兩個等效模型可以使我們更容易瞭解矽質基板耦合效應的機制。
在本論文中,首先在第二章中我們利用一個傳統的BSIM3v3大訊號模型,建立了一個完整的金氧半場效電晶體高頻大訊號模型。利用此一高頻大訊號模型,我們另提出一利用偏壓改善線性度的方法。此一方法不需犧牲過多的輸出功率即可提高元件的線性度。
在第三章中,我們先針對傳統的主動式電感做一簡介,之後我們利用疊接式主動電感的架構來設計並製作了一個金氧半場效電晶體主動式電感。此疊接式主動電感最大的品質係數為41而等效電感值為7.1-nH,同時此主動電感可以透過對偏壓電流的調整達到不同的等效電感值。此外,我們利用0.18微米金氧半場效電晶體製程設計並製作一新架構的主動電感。此主動電感利用一個回授電阻加入疊接式主動電感的電路中以提供更高的品質係數,此回授電阻疊接式主動電感可以產生約5.7-nH的等效電感值,而最大的品質因數為70。相較於傳統的螺旋式電感,主動式電感具有較高的品質係數與較小的面積。
在第四章的部份,則是介紹高頻訊號在矽質基板中的耦合效應的研究,包括了研究矽質基板耦合效應的測試架構,以及兩種不同的等效模型。
最後,在第五章中,根據第二章所述的高頻大訊號模型,我們分別設計了振盪器、電壓控制振盪器、功率放大器、降頻電路與射頻發射模組。在此振盪器包括兩個不同頻段的振盪器,分別是2.4-GHz與7-GHz,這兩個振盪器皆能產生-5 dBm以上的輸出功率,且振盪器的相位雜訊皆有近-100 dBc/Hz的良好結果。在電壓控制振盪器的部份,振盪訊號頻率為2.4-GHz,而可調增益為176-MHz/V。此外,我們亦設計了一操作於2.4-GHz的功率放大器,此功率放大器可以產生17.5-dBm的最大輸出功率。同時,為了瞭解該功率放大器的線性度,我們利用不同的數位調變、解調的方式來驗證其線性度的好壞。接著在第五章中,我們介紹一個2.4-GHz的降頻電路,此降頻電路包括一個增益放大器、電壓控制振盪器與一個單平衡式混波器。該電路可將2.4 GHz的射頻訊號轉換到中頻訊號,並能輸出24-dBv的電壓轉換增益。在第五章最後,我們設計了一個射頻發射模組,此模組包括一個功率放大器、增益放大器、電壓控制振盪器、被動平衡器與一個雙平衡式混波器。此一射頻發射模組是採用0.18微米金氧半場效電晶體製程所製作的,它具有10-dBm的最大輸出功率與18.5-dB的最大轉換增益,若以0-dBm為輸出功率的規格,則此一射頻發射模組具有450-MHz的頻寬。而此系統僅耗費56-mW的直流功率。
摘要(英) ABSTRACT
With the keen competition in personal communication system market, low cost, high performance and short time-to-market are basic requirements of commercial products. Therefore, the CMOS process is becoming a popular technology using in GHz communication systems nowadays. To overcome the limitations in simulate a CMOS RF circuit, a precisely RF large-signal model is required, which can accurately predict the device’s DC and RF characteristics. In this thesis, a MOSFET RF large-signal model is proposed at first, which consists of a conventional BSIM3v3 model, and an added passive network representing the parasitic effects. This modified RF large-signal model can not only predict device’s DC and RF behaviors precisely but the power characteristics can be also predicted well. With this MOSFET RF large-signal model, different RF circuits are presented to testify the accuracy of our homemade RF large-signal model. In addition, the RF signal coupling effects in silicon substrate are also proposed.
In the chapter 2, a modified MOSFET RF large-signal model is introduced. Furthermore, a bias-controlled linearity method is introduced, which can improve device linearity without sacrificing the output power.
In the chapter 3, the active inductor structures have been introduced, and then a cascode-grounded active inductor was fabricated and characterized. It can deliver an equivalent effective inductance of 7.1-nH with a maximum quality-factor of 41. However, the effective inductance and quality-factor can be tuned by controlling the bias current. Furthermore, a novel active inductor structure with a feedback resistance applied to a cascode-grounded active inductor architecture is proposed in this chapter. The feedback resistance results in a higher effective inductance and higher quality-factor. The effective inductance, maximum quality-factor and self-resonance frequency are 5.7-nH, 70, and 2.5-GHz, respectively. Comparing the active inductor with spiral inductors, the active inductor has much higher quality-factor and smaller die size.
關鍵字(中) ★ 高頻大訊號模型
★ 微波電路
★ 金氧半場效電晶體
★ 主動式電感
★ 矽質基板耦合效應
關鍵字(英) ★ RF large-signal model
★ microwave circuit
★ CMOS
★ active inductor
★ silicon substrate coupling effect
論文目次 Abstract I
Figure captions VIII
Table captions XV
Chapter 1 Introductions 1
Chapter 2 Modified MOSFET RF Large-Signal Model
2-1. Introduction 4
2-2. Basic Principles of BSIM3 Model 5
2-2.1. Threshold Voltage 6
2-2.2. Mobility Model 7
2-2.3. Carrier Drift Velocity 8
2-2.4. Bulk Charge Effect 9
2-2.5. Strong Inversion Drain Current (Linear Region) 9
2-2.6. Strong Inversion Current and Output Resistance (Saturation Region) 11
2-2.7. Capacitance Modeling 13
2-2.8. Non-Quasi Static Model 14
2-3. RF Large-Signal Model for 0.35-mm MOSFETs 15
2-4. Improved Device Linearity by a Controlled DC Bias 30
2-5. Passive Component Models 34
2-5.1 The equivalent circuit model of spiral inductors 34
2-5.2. The capacitance model 36
2-6. Summary 36
Chapter 3 The CMOS Active Inductors
3-1. Introduction 41
3-2. Basic Concepts of Active Inductor Architectures 42
3-3. The Cascode-Grounded Active Inductor 47
3-4. The Feedback-Resistance Active Inductor Design 49
3-5. Characteristics of Feedback-Resistance Active Inductor 55
3-6. Summary 59
Chapter 4 Signal-Coupling Effect from Silicon Substrate
4-1. Introduction 60
4-2. Mechanism of Power Coupling from Silicon Substrate 61
4-3. The Power Coupling Effect Model 67
4-3.1. The Passive Component Equivalent Circuit Model for Power Coupling Effect 67
4-3.2. A Semi-Empirical Model for Power Coupling Effect 71
4-4. Summary 76
Chapter 5 CMOS RF Circuit Designs
5-1. Introduction 79
5-2. The Microwave Monolithic Oscillators 81
5-2.1. Oscillator Design and Architectures 81
5-2.2. The 2.4-GHz Monolithic CMOS Oscillators 89
5-2.3. The 7-GHz Monolithic CMOS Oscillator 91
5-2.4. The Voltage-Controlled Oscillators 93
5-3. The 2.4-GHz power amplifier 97
5-3.1. The Principle of Power Amplifier Design 97
5-3.2. The 2.4-GHz Power Amplifier Design 103
5-3.3. The Power Amplifier Measurement Results 105
5-4. The 2.4-GHz CMOS Monolithic Down-Converter 110
5-4.1. General Considerations of Transceiver 110
5-4.2. The 2.4-GHz Down-Converter Design 115
5-5. The 2.4-GHz CMOS Monolithic Transmitter 119
5-7. Summary 125
Chapter 6 Conclusions and Future Work Suggestion 132
References 136
Publication List 141
參考文獻 REFERENCES
[1] A. E. Schmitz, R. H. Walden; L. E. Larson; S. E. Rosenbaum; R. A. Metzger and J.R. Behnke, “A deep-submicrometer microwave/digital CMOS/SOS technology”, IEEE Electron Device Letters, Vol. 12, Jan. 1991, pp. 16–17.
[2] T. Yamaguchi and T. H. Yuzuriha, “Process integration and device performance of a submicrometer BiCMOS with 16-GHz ft double poly-bipolar devices”, IEEE Trans. on Electron Devices, Vol. 36, May 1989, pp. 890-896.
[3] M. Saito, M. Ono, R. Fujimoto, H. Tanimoto, N. Ito, T. Yoshitomi, T. Ohguro, H. S. Momose and H. Iwai, “0.15 mm RF CMOS technology compatible with logic CMOS for low-voltage operation”, IEEE Trans. on Electron Devices, Vol. 45, March 1998, pp. 737–742.
[4] J. Moers, D. Klaes, A. Tonnesmann, L. Vescan, S. Wickenhauser, M. Marso, P. Kordos and H. Luth, “19 GHz vertical Si p-channel MOSFET”, Electronics Letters, Vol. 35, Feb. 1999, pp. 239–240.
[5] H. Iwai, “CMOS technology for RF application”, in Proc. 22nd Int. Conference Microelectronics, Vol. 1, 1999, pp. 27–34.
[6] M. Kittler, F. Schwierz and D. Schipanski, “Scaling of vertical and lateral MOSFETs in the deep submicrometer range”, in Proc. Int. Caracas Conference on Devices, Circuits and Systems, 2000, pp. D58/1-D58/6.
[7] H. S. Momose, T. Ohguro, K. Kojima, S. Nakamura and Y. Toyoshima, “110 GHz cutoff frequency of ultra-thin gate oxide p-MOSFET on [110] surface-oriented si substrate”, in Technical Digest of VLSI Technology, 2002, pp. 156–157.
[8] R. H. Yan, K. F. Lee, D. Y. Jeon, Y. O. Kim, B. G. Park, M. R. Pinto, C. S. Rafferty, D. M. Tennant, E. H. Westerwick, G. M. Chin, M. D. Morris, K. Early, P. Mulgrew, W. M. Mansfield, R. K. Watts, A. M. Voshchenkov, J. Bokor, R. G. Swartz and A. Ourmazd, “89-GHz fT room-temperature silicon MOSFETs”, IEEE Electron Device Letters, Vol. 13, May 1992, pp. 256–258.
[9] R. H. Yan, K. F. Lee, D. Y. Jeon, Y. O. Kim, B. G. Park, M. R. Pinto, C. S. Rafferty, D. M. Tennant, E. H. Westerwick, G. M. Chin, M. D. Morris, K. Early, P. Mulgrew, W. M. Mansfield, R. K. Watts, A. M. Voshchenkov, J. Bokor, R. G. Swartz and A. Ourmazd, “High performance 0.1- mm room temperature Si MOSFETs”, in Technical Digest of VLSI Technology, 1992, pp. 86–87.
[10] Bluetooth specification version 1.0A, radio specification, pp18-31.
[11] Wireless LAN medium access control (MAC) and Physical layer (PHY) specifications: high speed physical layer in the 2.4 GHz band, IEEE Std. 802.11b, Part 11, Sep. 1997.
[12] BSIM3v3 Manual, Department of Electrical Engineering and Computer Science, University of California, CA, 1996.
[13] W. Liu, R. Gharpurey, M. C. Chang, U. Erdogan, R. Aggarwal and J. P. Mattia, “RF MOSFET modeling accounting for distributed substrate and channel resistances with emphasis on the BSIM3v3 SPICE model”, in Technical Digest of Electron Devices Meeting, 1997, pp. 309–312.
[14] J. J. Ou; X. Jin; I. Ma, C. Hu and P. R. Gray, “CMOS RF modeling for GHz communication IC’’s”, in Technical Digest of VLSI Technology, 1998, pp. 94–95.
[15] C. H. Kim, C. S. Kim, H. K. Yu, and K. S. Nam, “Unique extraction of substrate parameters of common-source MOSFETs”, IEEE Microwave and Guided Wave Letters, Vol. 9, March 1999, pp. 108–110.
[16] S. Lee and H. K. Yu, “A new extraction method for BSIM3v3 model parameters of RF silicon MOSFETs”, in Proc. of Int. Microelectronic Test Structures Conference, 1999, pp. 95–98.
[17] C. Enz and Y. Cheng, “MOS transistor modeling for RF IC design”, IEEE Journal of Solid-State Circuits, Vol. 35, Feb. 2000, pp 186–201.
[18] S. Lee and H. K. Yu, “A semianalytical parameter extraction of a SPICE BSIM3v3 for RF MOSFET’’s using S-parameters”, IEEE Trans. on Microwave Theory and Techniques, Vol. 48, March 2000, pp. 412–416.
[19] Y. Cheng and M. Matloubian, “On the high-frequency characteristics of substrate resistance in RF MOSFETs”, IEEE Electron Device Letters, Vol. 21, Dec. 2000, pp. 604–606.
[20] G. S. Gildentblat, VLSI Electronics: Microstructure Science, Vol.18, 1989, pp. 11.
[21] A. G. Sabnis and J. T. Clemens, “Characterization of Electron Velocity in the Inverted <100> Si Surface”, Tech. Digest Int. Electron Device Meet, 1979, pp. 18-21.
[22] M. S. Liang, J. Y. Choi, P. K. Ko and C. Hu, “Inversion-layer capacitance and mobility of thin gate-oxide MOSFET’s”, IEEE Trans. Electron Devices, Vol. 33, 1986, pp. 409.
[23] F. Fang and X. Fowler, “Hot-electron effects and saturation velocity in silicon inversion layer”, Journal Appl. Phys., 1969, pp. 1825.
[24] E. A. Talkhan, I. R. Manour and A. I. Barboor, “Inverstigation of the effect of driftfield-dependent mobility on MOSFET characteristics”, IEEE Trans. On Electron Devices, Vol. 19, 1972, pp. 899-916.
[25] BSIM3 version2.0 user’s manual, Department of Electrical Engineering and Computer Science, University of California, CA, march 1994.
[26] J. A. Greenfield and R. W. Dutton, “Nonplanar VLSI device analysis using the solution of Poisson’s equation”, IEEE Trans. Electron Devices, Vol. 27, 1980, pp. 1520.
[27] G. W. Taylor, “Subthershold conduction in MOSFET’s” IEEE Trans. Electron Devices, Vol. 25, 1978, pp. 337.
[28] M. C. Jeng, “Design and modeling of deep-submicrometer MOSFETs”, Ph. D. dissertation, university of California.
[29] K. Y. Toh, P. K. Ko and R. G. Meyer, “An engineering model for short-channel MOS devices”, IEEE Journal of Solid-State Circuits, Vol. 23, Aug. 1988, pp. 950-958.
[30] K. K. Hung et al, “A physics-based MOSFET noise model for circuit simulators”, IEEE Trans. Electron Devices, Vol. 37, May 1990, pp. 1323-1333.
[31] S. Lee, C. S. Kim and H. K. Yu “A small-signal RF model and its parameter extraction for substrate effects in RF MOSFETs”, IEEE Transactions on Electron Devices, Vol. 48, July 2001, pp. 1374–1379.
[32] T. C. Ng, T. N. Swe, K. S. Yeo, K. W. Chew, J. G. Ma and M. A. Do, “Small signal model and efficient parameter extraction technique for deep submicron MOSFETs for RF applications” in Proc. of IEE Circuits, Devices and, Vol. 148, Feb 2001, pp. 35–39.
[33] S. Lee and H. K. Yu, “Accurate high-frequency equivalent circuit model of silicon MOSFETs”, Electronics Letters, Vol. 35, Aug. 1999, pp. 1406 –1407.
[34] J. P. Raskin, G. Dambrine, R. Gillon, “Direct extraction of the series equivalent circuit parameters for the small-signal model of SOI MOSFETs”, IEEE Microwave and Guided Wave Letters, Vol. 7, Dec. 1997, pp. 408–410.
[35] S. Lee, H. K. Yu, C. S. Kim, J. G. Koo and K. S. Nam, “A novel approach to extracting small-signal model parameters of silicon MOSFET’’s”, IEEE Microwave and Guided Wave Letters, Vol. 7, March 1997, pp. 75–77.
[36] D. Lovelace, J. Costa and N. Camilleri, “Extracting small-signal model parameters of silicon MOSFET transistors”, IEEE MTT-S Digest, Vol. 2, 1994, pp. 865–868.
[37] J. N. Burghartz, K. A. Jenkins and M. Soyuer, “Multilevel-spiral inductors using VLSI interconnect technology”, IEEE Electron Device Letters, Vol. 17, Sept. 1996, pp. 428-430.
[38] M. Park, S. Lee, H. K. Yu, J. G. Koo and K. S. Nam, “High Q CMOS-compatible microwave inductors using double-metal interconnection silicon technology”, IEEE Microwave and Guided Wave Letters, Vol. 7, Feb. 1997, pp. 45-47.
[39] P. Q. Chen and Y. J. Chan, “Improved microwave performance on low-resistivity Si substrates by Si+ ion implantation”, IEEE Trans. Microwave Theory Tech., Vol. 48, Sept. 2000, pp. 1582–1585.
[40] S. Hara, T. Tokumitsu, T. Tanaka and M. Aikawa, “Broad band monolithic microwave active inductor and its application to miniaturise wide band amplifiers”, IEEE Trans. Microwave Theory Tech., Vol. 36, Dec. 1988, pp.1920-1924.
[41] S. G. El Khoury, “New approach to the design of active floating inductors in MMIC technology”, IEEE Trans. Microwave Theory Tech., Vol. 44, April 1996, pp. 505-512.
[42] A. Pascht, J. Fischer and M. Beeroth, “A CMOS low noise amplifier at 2.4 GHz with active inductor load”, Silicon Monolithic Integrated Circuits in RF Systems, 2001, pp. 1-5.
[43] A. Thanachayanont and A. Payne, “ VHF CMOS integrated active inductor”, Electronics Letters, Vol. 32, May 1996, pp. 999-1000.
[44] G. Mascarenhas, J. Caldinhas Vaz and J. Costa Freire, “CMOS active inductors for L band”, Asia-Pacific Microwave Conference, 2000, pp. 157-160.
[45] J. N. Yang, Y. C. Cheng, T. Y. Hsu, T. R. Hsu and C. Y. Lee, “A 1.75 GHz inductor-less CMOS low noise amplifier with high-Q active inductor load”, Midwest Symposium on Circuits And Systems, Vol. 2, 2001, pp. 816-819.
[46] R. Goyal, High frequency analog integrated circuit design, John Wiley, New York, 1995.
[47] I. E. Ho and R. L. Van Tuyl, “Inductorless monolithic microwave amplifiers with directly cascaded cells”, in Tech. Digest of IEEE MTT-S symposium, Vol. 1, May 1990, pp 515-518.
[48] U. Arz, D. F. Williams, D. K. Walker and H. Grabinski, “Accurate electrical measurement of coupled lines on lossy silicon”, IEEE Conf. on Electrical Performance of Electronic Packaging, 2000, pp. 181–184.
[49] G. Carchon and B. Nauwelaers, “Accurate transmission line characterisation on high and low-resistivity substrates”, in Proc. of IEE Microwaves, Antennas and Propagation, Vol. 148, Oct. 2001, pp. 285–290.
[50] T. M. Winkel, “An accurate and complete frequency dependent transmission line characterization using S-parameter measurements”, Electrical Performance of Electronic Packaging, 1999, pp. 133–136.
[51] M. Sung, W. Ryu, H. Kim, J. Kim and J. Kim, “An efficient crosstalk parameter extraction method for high-speed interconnection lines”, IEEE Transactions on Advanced Packaging, Vol. 23, May 2000, pp. 148–155.
[52] J. Zheng; V. K. Tripathi and A. Weisshaar, “Characterization and modeling of multiple coupled on-chip interconnects on silicon substrate”, IEEE Trans. on Microwave Theory and Techniques, Vol. 49, Oct. 2001, pp. 1733–1739.
[53] S. Zaage and E. Groteluschen, “Characterization of the broadband transmission behavior of interconnections on silicon substrates”, IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Vol. 16, Nov. 1993, pp. 686–691.
[54] D. E. Bockelman and W. R. Eisenstadt, “Direct measurement of crosstalk between integrated differential circuits”, IEEE Trans. on Microwave Theory and Techniques, Vol. 48, Aug. 2000, pp. 1410–1413.
[55] W. Shi and J. Fang, “Evaluation of closed-form crosstalk models of coupled transmission lines”, IEEE Transactions on Advanced Packaging, Vol. 22, May 1999, pp. 174–181.
[56] A. C. Reyes, S. M. El-Ghazaly, S. Dorn, M. Dydyk, D. K. Schroder, “Silicon as a microwave substrate”, in Digest of IEEE MTT-S Symposium, Vol.3, 1994, pp. 1759–1762.
[57] G. D. Vendelin, A. M. Pavio and U.L. Rohade, Microwave circuit design using linear and nonlinear techniques, John Wiley, New York, 1990.
[58] T. H. Lee, The design of CMOS radio frequency integrated circuits, Cambridge, 1998.
[59] B. Razavi, RF microelectronics, Prentice Hall Inc, New York, 1998.
[60] M. Soyuer, K. A. Jenkins, J. N. Burghartz and M. D. Hulvey, “A 3 V 4 GHz nMOS voltage-controlled oscillator with integrated resonator”, in Tech. Digest of Int. Solid-State Circuits Conf., 1996, pp. 394–395.
[61] S. W. Yoon, E. C. Park, C. H. Lee, S. Sim, S. G. Lee, E. Yoon, J. Laskar and S. Hong, “Cross-coupled differential oscillator MMICs with low phase-noise performance”, IEEE Microwave and Wireless Components Letters, Vol. 11, Dec. 2001, pp. 495–497.
[62] F. Herzel, H. Erzgraber and P. Weger, “Integrated CMOS wideband oscillator for RF applications”, Electronics Letters, Vol. 37, March 2001, pp. 330–331.
[63] E. Cijvat, “A 0.35 mm CMOS DCS front-end with fully integrated VCO”, in Tech. Digest of IEEE International Conference on Electronics, Circuits and Systems, Vol.3, 2001, pp. 1595–1598.
[64] P. Andreani and H. Sjoland, “A 1.8 GHz CMOS VCO with reduced phase noise”, in Tech. Digest of VLSI Circuits, 2001, pp. 121–122.
[65] R. Bunch and S. Raman, “A 0.35 mm CMOS 2.5 GHz complementary -GM VCO using PMOS inversion mode varactors”, in Digest of IEEE RFIC Symposium, 2001, pp. 49–52.
[66] A. Dec and K. Suyama, “A 1.9-GHz CMOS VCO with micromachined electromechanically tunable capacitors”, IEEE Journal of Solid-State Circuits, Vol. 35, Aug. 2000, pp. 1231 –1237.
[67] H. L. Kraus, C. W. Bostian and F. Hraab, Solid state radio engineering, John Wiley, New York, 1980.
[68] P. R. Gray and R. G. Meyer, Analysis and design of analog integrated circuits, 3rd ed., John Wiley, New York, 1993.
[69] A. Giry, J. M. Fourniert and M. Pons, “A 1.9 GHz low voltage CMOS power amplifier for medium power RF applications”, in Digest of RFIC Symposium, 2000, pp. 121-124.
[70] E. Chen, D. Heo, M. Hamai, J. Laskar and D. Bien, “0.24-um CMOS technology for Bluetooth power applications”, in Tech. Digest of RAWCON 2000, 2000, pp. 163–166.
[71] D. Heo, A. Sutono, E. Chen, E. Gebara, S. Yoo, Y. Suh, J. Laskar, E. Dalton and E. M. Tentzeris, “A high efficiency 0.25 mm CMOS PA with LTCC multi-layer high-Q integrated passives for 2.4 GHz ISM band”, in Digest of IEEE MTT-S, Vol. 2, 2001, pp. 915-918.
[72] Y. C. Chen, Y. K. Yoon, J. Laskar and M. Allen, “A 2.4 GHz integrated CMOS power amplifier with micromachined inductors”, in Digest of IEEE MTT-S, Vol. 1, 2001, pp. 523-526.
[73] C. Fallesen and P. A. Asbeck, “1 W CMOS power amplifier for GSM-1800 with 55% PAE”, in Digest of IEEE MTT-S, Vol. 2, 2001, pp. 911-914.
[74] C. W. Kuo, C. C. Hsiao, C. C. Ho and Y. J. Chan, “Scaleable large-signal model of 0.18 mm CMOS process for rf power predictions”, will be published in Solid State Electronics.
[75] C. C. Ho, C. W. Kuo, C. C. Hsiao and Y. J. Chan, “A 2.4 GHz low phase noise VCO fabricated by 0.18 mm pMOS technologies”, submitted to Electronics Letters
指導教授 詹益仁(Yi-Jen Chan) 審核日期 2002-10-7
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明