博碩士論文 87621013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:3.17.203.68
姓名 吳紫陵(Tzi-Lin Wu)  查詢紙本館藏   畢業系所 化學學系
論文名稱 利用掃描式電子穿隧顯微鏡觀察鍍銅在鉑(111)及銠(111)電極表面
相關論文
★ 岐狀結構材料在鋰電池的應用★ Adsorption and Electrochemical Polymerization of Pyrrole on Au (100) Electrode as Examine by In Situ Scanning Tunneling Microscopy
★ Synthesis and Characterization of Cyclopentadithiophene (CDT) based Organic Photovoltaic and Pyrazine Contained Hole Transporting Small Molecules★ 有機碘化物在金、銠、鉑(111)電極和有機二硫醇化物在鉑(111)電極的吸附結構
★ STM研究銥(111)上碘、一氧化碳和一氧化氮的吸附及銅(100)上鎳和鉛的沈積★ 使用in-situ STM和循環伏安儀研究銅和銀在碘修飾的鉑(100)電極之沈積過程
★ 利用in-situ STM觀察銅(100)電極上鉛與鎳的沉積過程★ 利用in-situ STM觀察硫酸根、氧及碘在釕(001)電極和醋酸、間苯三酚在銠(111)電極的吸附結構
★ 掃描式電子穿隧顯微鏡及循環伏安法對 有機碘化物在鉑(111)電極上的研究★ 半導體碘化鉛薄膜在單結晶銠電極上的研究
★ 利用掃描式電子穿隧顯微鏡觀察汞薄膜在銥(111)電極上鹵素的吸附結構★ 掃描式電子穿隧顯微鏡研究碘原子對汞在 銥(111)、鉑(111)及銠(111)上沈積的影響
★ 掃描式電子穿隧顯微鏡對烷基及芳基硫醇分子在鉑(111)及金(111)上之研究★ 掃描式電子穿隧顯微鏡研究一氧化碳、硫、硫醇分子及氯在釕(001)上的吸附結構
★ 硫氧化物及聚賽吩衍生物 在金、鉑電極上之研究★ 掃描式電子穿隧顯微鏡研究甲醇、甲醛、甲酸、一氧化碳分子和鉛原子在鉑(111)和鉑(100)上的吸附結構
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在硫酸溶液中加入少量的氯離子造成了鉑(111)電極上銅UPD的劇大變化,兩個UPD特徵峰的間距由50增加到200 mV,較正的UPD峰向正移100 mV,而較負的UPD峰向負移100 mV,這些CV結果顯示氯離子使得銅更易被還原。於0.7 V左右(第一根UPD特徵峰時),STM顯示一(4 × 4)的結構,它應是吸附在銅層上面的氯離子所造成,雖然STM沒有顯示銅原子的結構,但它很有可能也是形成一間距為0.37 nm的(4 × 4)結構,此一原子的排列方式和 CuCl的(111)面結構相同;於0.65 V(第一UPD特徵峰結束),氯的結構轉變為(√7 × √7)R19.1°,由於高解像的STM結果顯示在此結構下有一六方排列的銅原子層,其間距為0.28 nm,因此這樣的變化是由更多銅沉積所造成;當電位降至0.45 V(第二UPD特徵峰結束),氯保持(√7 × √7)R19.1°的結構,但STM結果顯示銅原子的間距縮短為0.26 nm,因此第二UPD特徵峰應是於銅的繼續沉積,而非氯的脫附,這些STM結果對爭論多時的銅UPD現象提供了重要的訊息。
摘要(英) This work reports in situ scanning tunneling microscopy (STM) results of underpotential deposition (UPD) of copper at well-ordered Pt(111) and Rh(111) electrodes in sulfuric acid solution. With a 1 mV/s scan rate cyclic voltammograms of Pt(111) reveal two well-defined UPD peaks at 0.65 and 0.61 V,while only one UPD peak at 0.44 V is observed for Rh(111). Real-time STM imaging along the UPD processes of Cu on Pt(111) reveal that these features correspond to the formation of a (√3 ×√3)R30°structure and a disorder phase. The entire surface was covered with an (√3 × √7)oblique structure at the onset of bulk deposition. These STM results are tentatively assigned to the (bi)sulfate anions coadsorbed with Cu adatoms sandwiched between the Pt electrode and sulfate anions. In contrast, a monolayer of Cu is plated in a single step on Rh(111), which was always accompanied by (bi)sulfate anions arranging in a well-ordered (
√3 × √7)oblique structure. A series time-dependent in situ STM images were acquired to unveil the deposition processes of Cu, which clearly show the initiation of deposition at defect sites, particularly upper step ledges, and the subsequently rapid lateral growth of Cu islands to cover nearly the whole surface. Decreasing potential to the bulk deposition region led to the formation of local Cu islands with a thickness of 4-5 layers of Cu, on which a well ordered (√3 ×
√7)oblique structure was observed. All the STM results indicate that sulfate anions actively participated in the UPD processes of Cu at these two electrodes. The contrast between these two electrodes illustrates the important roles of anions and interfacial forces existing among the electrodes, adatoms and anions.
The cyclic voltammograms for well-ordered Pt(111) electrodes in 0.05 M HCl + 1 mM Cu(ClO4)2 show a marked effect of chloride on UPD of Cu, as two CV feature are total resolved .In situ STM imaging at 0.7 V(1st UPD peak),indeed indicate the formation of an incommensurate (4 × 4) structure, presumably due to the upper chloride layer, whereas the lower Cu layer remained hidden. At 0.65V,in situ STM revealed (√7 × √7)R19.1°. Because this structure appeared at the end of the 1st peak, the structural transformation from (4 × 4) to (√7 ×√7)R19.1°was induced by deposition of more Cu atoms. Changing imaging condition led to revelation of a hexagonal array with a lattice constant of 0.28 nm, attributable to the lower Cu layer.In situ STM imaging at 0.45 V still revealed a well-ordered (√7 × √7)R19.1°-Cl adlayer, but a hexagonal array with a lattice constant of 0.256 nm.The 2nd peak could be continuous deposition of Cu, resulting in from a pseudomorphoric to a close-pack(1 × 1) structure.
關鍵字(中) ★ 鉑(111)
★ 銠(111)
關鍵字(英)
論文目次 中文摘要 ---------------------Ⅰ
英文摘要 ---------------------Ⅲ
目錄 ---------------------Ⅵ
圖目錄 ---------------------Ⅷ
緒論 ----------------------1
1-1前言 ----------------------1
1-2 STM的原理 -------------2
1-3 儀器的架構 -------------3
1-4 ECSTM的原理 -------------4
1-5 Cu UPD的歷史與背景 ----4
貳.實驗部分 -------------10
2-1 藥品部分 -------------10
2-2 氣體部分 -------------10
2-3 金屬部分 -------------11
2-4 儀器部分 -------------11
2-5 實驗步驟 -------------12
參.結果與討論 -------------14
3-1 鉑(111)電極上銅的UPD ----14
3-1-1 鉑(111)電極循環伏安圖 ----14
3-1-2 鉑(111)電極的掃描穿隧顯微鏡圖像-----17
3-2 銅在銠(111)電極上的UPD ---------------22
3-2-1 銠(111)電極的循環伏安圖--------------22
3-2-2 掃描式穿隧電子顯微鏡下的Cu UPD過程---24
3-3 鹵素對銅UPD的影響 ----------------30
3-3-1 鉑(111)電極循環伏安圖 ----------------30
3-3-2 用STM 觀察氯離子對銅的 UPD在鉑(111)電極的影響--32
肆.結論 ----------------------------------40
4-1 鉑(111)電極上銅的UPD ----------------40
4-2 銅在銠(111)電極上的UPD ----------------40
4-3 氯離子對銅的 UPD在鉑(111)電極的影響-----40
伍.參考文獻 --------------------------42
參考文獻 1. Sonnenfeld, R.; Hansma, P. K. Science, 1986, 232, 211.
2. Allogune, P.; Brune, H.; Gerischer, H. Surface Science, 1992, 275, 414.
3. Cruickshank, B. J.; Gewirth, A. A.; Rynders, M.; Alkire, R. C. J.
Electrochem.Soc. 1992,139,2829.
4. Gao, X.; Weaver, M. J. J. Electroanal. Chem. 1994,367, 259.
5. Wu, C. Y.; Pockering, H. W.; Gregory, D.S.; Geh, S.; Sakurai, T.
Surface. Science.
1991, 246, 468.
6. Adzic, R.R. in Advances in Electrochemistry and Electrochemical
Engineering, Gericher ,H., Tobias,C.W., Eds.; Wiley-Interscience: New
York, 1984; Vol. 13, pp 159-260.
7. Kolb, D.M. in Advances in Electrochemistry and Electrochemical
Engineering; Gerivher,H., Tobias C.W., Eds.; Wiley-Interscience: New
York, 1978; Vol. 11.
8. Campell, C. T. Annu. Rev. Phys. Chem. 1990, 41, 775.
9. Magnussen,O.M.; Hotlos,J.; Nichols,R.J.; Kolb,D.M.; Behm,R.J. Phys.
Rev. Lett. 1990, 24, 2929.
10.Manne,S.; Hansma,P.K.; Massie,J.; Elings,V.B.; Gewirth,A.A. Science
1991, 251,183.
11. Shi, Z.; Lipkowski,J. J. Electroanal. Chem. 1994, 365, 303.
12. Toney,O.R. Phys. Rev. Lett. 1995, 24, 4427.
13. Ikemiya, N.; Miyaoka, S.; Hara, S. Surf. Sci. 1994, 311, L641.
14. White, J.H.; Abruna,H.D. J. Phys. Chem. 1990, 94, 894
15. Gomes, J.; Feliu,J.M.; Abruna,H.D. J. Phys. Chem. 1994, 98, 5514.
16. Yee, H.S.; Abruna,H.D. J. Phys. Chem. 1993, 97,6278.
17. Shingaya,Y.; Matsumoto,H.; Ogasawara,H. Ito,M. Surf, Sci. 1995,
335, 23.
18. Sashikata, K.; Furuya,H.; Itaya,K. J. Electroanal, Chem. 1991,316,
361.
19. Lucas, C.A.; Markovic, N.M.; Ross,P.N. Phys. Rev. B 1997, 56, 3651.
20. Machaelis, R.; Zhai,R.S.; Kolb,D.M. J. Electroanal. Chem. 1992,
339,299.
21. Sung,Y.E.; Thomas,S.; Tanzer,J.A.; Wieckowski,A. Electrochemical
Society Proceedings; Itaya,K., Wieckowaki,A., Eds.; Electrochemical
Society: Pennington, NJ, 1997; Vol.96, p 29.
22. Herrero,E.; Glazier,S.; Buller,L.J.; Abruna,H.D. J. Electroanal. Chem.
1999, 461, 121.
23. Hourani, M.; Wasberg,M.; Rhee,C.K.; Wieckowski,A. Croat. Chem.
Acta. 1990, 63,373.
24. Wan, L.J.; Yau,S.L.; Itaya,K. J. Phys. Chem. 1995, 99, 9507.
25. Clavilier, J.; Rodes,A.; Elachi,K.; Zamakhchari,M.A. J. Chem. Phys.
1991, 88, 1291.
26. Inukai,J.; Osawa,Y.; Wakisaka,M.; Sashikata,K.; Kim,Y.G.; Itaya,K.
J. Phys. Chem. B 1998, 102, 3498.
27. Ogasawara, H.; Sawatari,Y.; Inukai,J.; Ito,M. J. Electroanal. Chem.
1993, 368, 337.
28. Funtikov, A.M.; Stimming,U.; Vogel,R. J. Electroanal. Chem. 1997,
428, 147.
29. Yau, S.L.; Wan,L.; Itaya,K. unpublished results.
30. Gao, X.P.; Weaver,M.J. J. Am. Chem. Soc. 1992, 114, 8544.
31. Kunitake, M.; Batina,N.; Itaya,K. Langmuir 1995, 11, 2337.
32. Magnussen,O.M.; Hagebock,J.; Hotlos,J.; Behm,R.J. J. Chem. Soc.
Faraday Discuss. 1992, 94, 329.
33.Wan, L.J.; Hara,M.; Inukal,J.; Itaya,K. J. Phys. Chem., in press.
34. Li, W.H.; Nichol,R. J. Electroanal. Chem. 1998, 456, 153.
35. Savich,W.; Sun,S.G.; Lipkowski,A. J. Electroanal. Chem. 1995, 388,
233.
36. Foord,J.S.; Jones,P.D. Surf. Sci. 1985, 152/153,487.
37. H. Bludau et al. Surface Science 1998, 402-404, 786-789
38. R. Michaelis, M. S. Zei, R. S. Zhai, D. M. Kolb, J. Electroanal.
Chem. 1992, 339, 299.
39. N.M. Markovic’ et al. Surface Science 1995, 335, 91-100
指導教授 姚學麟(Shueh-Lin Yau) 審核日期 2000-7-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明